Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Transplantation ; 104(11): 2272-2289, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32150037

RESUMEN

Despite advances in mechanical circulatory devices and pharmacologic therapies, heart transplantation (HTx) is the definitive and most effective therapy for an important proportion of qualifying patients with end-stage heart failure. However, the demand for donor hearts significantly outweighs the supply. Hearts are sourced from donors following brain death, which exposes donor hearts to substantial pathophysiological perturbations that can influence heart transplant success and recipient survival. Although significant advances in recipient selection, donor and HTx recipient management, immunosuppression, and pretransplant mechanical circulatory support have been achieved, primary graft dysfunction after cardiac transplantation continues to be an important cause of morbidity and mortality. Animal models, when appropriate, can guide/inform medical practice, and fill gaps in knowledge that are unattainable in clinical settings. Consequently, we performed a systematic review of existing animal models that incorporate donor brain death and subsequent HTx and assessed studies for scientific rigor and clinical relevance. Following literature screening via the U.S National Library of Medicine bibliographic database (MEDLINE) and Embase, 29 studies were assessed. Analysis of included studies identified marked heterogeneity in animal models of donor brain death coupled to HTx, with few research groups worldwide identified as utilizing these models. General reporting of important determinants of heart transplant success was mixed, and assessment of posttransplant cardiac function was limited to an invasive technique (pressure-volume analysis), which is limitedly applied in clinical settings. This review highlights translational challenges between available animal models and clinical heart transplant settings that are potentially hindering advancement of this field of investigation.


Asunto(s)
Muerte Encefálica , Insuficiencia Cardíaca/cirugía , Trasplante de Corazón/efectos adversos , Disfunción Primaria del Injerto/etiología , Donantes de Tejidos , Animales , Insuficiencia Cardíaca/fisiopatología , Hemodinámica , Humanos , Modelos Animales , Disfunción Primaria del Injerto/fisiopatología , Especificidad de la Especie , Función Ventricular Izquierda , Función Ventricular Derecha
2.
Diabetes ; 63(3): 1032-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24353186

RESUMEN

Type I interferons (IFNs) have been implicated in the initiation of islet autoimmunity and development of type 1 diabetes. To directly test their involvement, we generated NOD mice deficient in type I IFN receptors (NOD.IFNAR1(-/-)). Expression of the type I IFN-induced genes Mx1, Isg15, Ifit1, Oas1a, and Cxcr4 was detectable in NOD islets as early as 1 week of age. Of these five genes, expression of Isg15, Ifit1, Oas1a, and Mx1 peaked at 3-4 weeks of age, corresponding with an increase in Ifnα mRNA, declined at 5-6 weeks of age, and increased again at 10-14 weeks of age. Increased IFN-induced gene expression was ablated in NOD.IFNAR1(-/-) islets. Loss of Toll-like receptor 2 (TLR2) resulted in reduced islet expression of Mx1 at 2 weeks of age, but TLR2 or TLR9 deficiency did not change the expression of other IFN-induced genes in islets compared with wild-type NOD islets. We observed increased ß-cell major histocompatibility complex class I expression with age in NOD and NOD.IFNAR1(-/-) mice. NOD.IFNAR1(-/-) mice developed insulitis and diabetes at a similar rate to NOD controls. These results indicate type I IFN is produced within islets in young mice but is not essential for the initiation and progression of diabetes in NOD mice.


Asunto(s)
Diabetes Mellitus Tipo 1/etiología , Interferón Tipo I/fisiología , Islotes Pancreáticos/metabolismo , Transducción de Señal/fisiología , Animales , Expresión Génica , Antígenos de Histocompatibilidad Clase I/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Receptor de Interferón alfa y beta/fisiología , Receptor Toll-Like 2/fisiología , Receptor Toll-Like 9/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA