Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260600

RESUMEN

Alzheimer's disease (AD) is an age-associated neurodegenerative disorder characterized by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-ß and tau1,2. Neuroinflammation mediated by microglia and brain-resident macrophages plays a crucial role in AD pathogenesis1-5, though the mechanisms by which age, genes, and other risk factors interact remain largely unknown. Somatic mutations accumulate with age and lead to clonal expansion of many cell types, contributing to cancer and many non-cancer diseases6,7. Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples from different brain regions revealed significantly higher (~two-fold) overall burdens of somatic single-nucleotide variants (sSNVs) in AD brains compared to age-matched controls. Molecular-barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed enrichment of sSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD brain compared to control, with recurrent, and often multiple, mutations in genes implicated in clonal hematopoiesis (CH)8,9. Pathogenic sSNVs were enriched in CSF1R+ microglia of AD brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH10,11. Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that somatic driver mutations in microglia are common with normal aging but further enriched in AD brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first insights into microglial clonal dynamics in AD and identify potential new approaches to AD diagnosis and therapy.

2.
Am J Med Genet A ; 194(4): e63477, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37969032

RESUMEN

Germline pathogenic variants in the RAS/mitogen-activated protein kinase (MAPK) signaling pathway are the molecular cause of RASopathies, a group of clinically overlapping genetic syndromes. RASopathies constitute a wide clinical spectrum characterized by distinct facial features, short stature, predisposition to cancer, and variable anomalies in nearly all the major body systems. With increasing global recognition of these conditions, the 8th International RASopathies Symposium spotlighted global perspectives on clinical care and research, including strategies for building international collaborations and developing diverse patient cohorts in anticipation of interventional trials. This biannual meeting, organized by RASopathies Network, was held in a hybrid virtual/in-person format. The agenda featured emerging discoveries and case findings as well as progress in preclinical and therapeutic pipelines. Stakeholders including basic scientists, clinician-scientists, practitioners, industry representatives, patients, and family advocates gathered to discuss cutting edge science, recognize current gaps in knowledge, and hear from people with RASopathies about the experience of daily living. Presentations by RASopathy self-advocates and early-stage investigators were featured throughout the program to encourage a sustainable, diverse, long-term research and advocacy partnership focused on improving health and bringing treatments to people with RASopathies.


Asunto(s)
Síndrome de Costello , Displasia Ectodérmica , Cardiopatías Congénitas , Neoplasias , Síndrome de Noonan , Humanos , Proteínas ras/genética , Sistema de Señalización de MAP Quinasas/genética , Síndrome de Costello/genética , Neoplasias/genética , Displasia Ectodérmica/genética , Síndrome de Noonan/genética , Cardiopatías Congénitas/genética
3.
bioRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986891

RESUMEN

The mammalian cerebral cortex shows functional specialization into regions with distinct neuronal compositions, most strikingly in the human brain, but little is known in about how cellular lineages shape cortical regional variation and neuronal cell types during development. Here, we use somatic single nucleotide variants (sSNVs) to map lineages of neuronal sub-types and cortical regions. Early-occurring sSNVs rarely respect Brodmann area (BA) borders, while late-occurring sSNVs mark neuron-generating clones with modest regional restriction, though descendants often dispersed into neighboring BAs. Nevertheless, in visual cortex, BA17 contains 30-70% more sSNVs compared to the neighboring BA18, with clones across the BA17/18 border distributed asymmetrically and thus displaying different cortex-wide dispersion patterns. Moreover, we find that excitatory neuron-generating clones with modest regional restriction consistently share low-mosaic sSNVs with some inhibitory neurons, suggesting significant co-generation of excitatory and some inhibitory neurons in the dorsal cortex. Our analysis reveals human-specific cortical cell lineage patterns, with both regional inhomogeneities in progenitor proliferation and late divergence of excitatory/inhibitory lineages.

4.
JAMA Neurol ; 80(6): 578-587, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126322

RESUMEN

Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Epilepsia , Neocórtex , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , Epilepsia del Lóbulo Temporal/cirugía , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estudios Retrospectivos , Hipocampo/patología , Epilepsia/patología
5.
Brain Pathol ; 31(4): e12958, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34196990

RESUMEN

Focal epilepsies are the largest epilepsy subtype and associated with significant morbidity. Somatic variation is a newly recognized genetic mechanism underlying a subset of focal epilepsies, but little is known about the processes through which somatic mosaicism causes seizures, the cell types carrying the pathogenic variants, or their developmental origin. Meanwhile, the inception of single cell biology has completely revolutionized the study of neurological diseases and has the potential to answer some of these key questions. Focusing on single cell genomics, transcriptomics, and epigenomics in focal epilepsy research, circumvents the averaging artifact associated with studying bulk brain tissue and offers the kind of granularity that is needed for investigating the consequences of somatic mosaicism. Here we have provided a brief overview of some of the most developed single cell techniques and the major considerations around applying them to focal epilepsy research.


Asunto(s)
Epilepsias Parciales/genética , Epilepsias Parciales/patología , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/patología , Encéfalo/patología , Variación Genética/genética , Genómica , Humanos , Mutación/genética
6.
Neuron ; 100(5): 1180-1193.e6, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30344048

RESUMEN

Considerable evidence suggests loss-of-function mutations in the chromatin remodeler CHD2 contribute to a broad spectrum of human neurodevelopmental disorders. However, it is unknown how CHD2 mutations lead to impaired brain function. Here we report mice with heterozygous mutations in Chd2 exhibit deficits in neuron proliferation and a shift in neuronal excitability that included divergent changes in excitatory and inhibitory synaptic function. Further in vivo experiments show that Chd2+/- mice displayed aberrant cortical rhythmogenesis and severe deficits in long-term memory, consistent with phenotypes observed in humans. We identified broad, age-dependent transcriptional changes in Chd2+/- mice, including alterations in neurogenesis, synaptic transmission, and disease-related genes. Deficits in interneuron density and memory caused by Chd2+/- were reproduced by Chd2 mutation restricted to a subset of inhibitory neurons and corrected by interneuron transplantation. Our results provide initial insight into how Chd2 haploinsufficiency leads to aberrant cortical network function and impaired memory.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Proteínas de Unión al ADN/fisiología , Memoria a Largo Plazo/fisiología , Neuronas/fisiología , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Femenino , Neuronas GABAérgicas/fisiología , Expresión Génica , Haploinsuficiencia , Hipocampo/crecimiento & desarrollo , Interneuronas/fisiología , Masculino , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis , Oligodendroglía/fisiología , Prosencéfalo/crecimiento & desarrollo , Corteza Somatosensorial/crecimiento & desarrollo
7.
Brain Lang ; 187: 83-91, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29397190

RESUMEN

Auditory speech comprehension is the result of neural computations that occur in a broad network that includes the temporal lobe auditory cortex and the left inferior frontal cortex. It remains unclear how representations in this network differentially contribute to speech comprehension. Here, we recorded high-density direct cortical activity during a sine-wave speech (SWS) listening task to examine detailed neural speech representations when the exact same acoustic input is comprehended versus not comprehended. Listeners heard SWS sentences (pre-exposure), followed by clear versions of the same sentences, which revealed the content of the sounds (exposure), and then the same SWS sentences again (post-exposure). Across all three task phases, high-gamma neural activity in the superior temporal gyrus was similar, distinguishing different words based on bottom-up acoustic features. In contrast, frontal regions showed a more pronounced and sudden increase in activity only when the input was comprehended, which corresponded with stronger representational separability among spatiotemporal activity patterns evoked by different words. We observed this effect only in participants who were not able to comprehend the stimuli during the pre-exposure phase, indicating a relationship between frontal high-gamma activity and speech understanding. Together, these results demonstrate that both frontal and temporal cortical networks are involved in spoken language understanding, and that under certain listening conditions, frontal regions are involved in discriminating speech sounds.


Asunto(s)
Lóbulo Frontal/fisiología , Inteligibilidad del Habla , Percepción del Habla , Lóbulo Temporal/fisiología , Adulto , Conectoma , Femenino , Humanos , Masculino
8.
Neuron ; 93(2): 291-298, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28041880

RESUMEN

GABAergic interneurons play critical roles in seizures, but it remains unknown whether these vary across interneuron subtypes or evolve during a seizure. This uncertainty stems from the unpredictable timing of seizures in most models, which limits neuronal imaging or manipulations around the seizure onset. Here, we describe a mouse model for optogenetic seizure induction. Combining this with calcium imaging, we find that seizure onset rapidly recruits parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptitde (VIP)-expressing interneurons, whereas excitatory neurons are recruited several seconds later. Optogenetically inhibiting VIP interneurons consistently increased seizure threshold and reduced seizure duration. Inhibiting PV+ and SOM+ interneurons had mixed effects on seizure initiation but consistently reduced seizure duration. Thus, while their roles may evolve during seizures, PV+ and SOM+ interneurons ultimately help maintain ongoing seizures. These results show how an optogenetically induced seizure model can be leveraged to pinpoint a new target for seizure control: VIP interneurons. VIDEO ABSTRACT.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Ratones , Corteza Motora/fisiopatología , Inhibición Neural , Optogenética/métodos , Convulsiones/fisiopatología , Animales , Channelrhodopsins , Electroencefalografía , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Corteza Motora/metabolismo , Parvalbúminas/metabolismo , Convulsiones/metabolismo , Somatostatina/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
9.
J Neurosci ; 29(35): 10890-9, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19726647

RESUMEN

During neocortical development, neurons exhibit highly synchronized patterns of spontaneous activity, with correlated bursts of action potential firing dominating network activity. This early activity is eventually replaced by more sparse and decorrelated firing of cortical neurons, which modeling studies predict is a network state that is better suited for efficient neural coding. The precise time course and mechanisms of this crucial transition in cortical network activity have not been characterized in vivo. We used in vivo two-photon calcium imaging in combination with whole-cell recordings in both unanesthetized and anesthetized mice to monitor how spontaneous activity patterns in ensembles of layer 2/3 neurons of barrel cortex mature during postnatal development. We find that, as early as postnatal day 4, activity is highly synchronous within local clusters of neurons. At the end of the second postnatal week, neocortical networks undergo a transition to a much more desynchronized state that lacks a clear spatial structure. Strikingly, deprivation of sensory input from the periphery had no effect on the time course of this transition. Therefore, developmental desynchronization of spontaneous neuronal activity is a fundamental network transition in the neocortex that appears to be intrinsically generated.


Asunto(s)
Potenciales de Acción/fisiología , Sincronización Cortical , Neocórtex/crecimiento & desarrollo , Red Nerviosa/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Sincronización Cortical/métodos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA