Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 36(10): 4511-4534, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39102899

RESUMEN

Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The tomato (Solanum lycopersicum) anthocyanin reduced (are) mutant harbors a mutation in FLAVANONE 3-HYDROXYLASE (F3H), resulting in impaired flavonol antioxidant biosynthesis. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, phenotypes that are accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent reactive oxygen species (ROS) accumulation in pollen and restored the reduced viability, germination, and tube elongation of are to VF36 levels. Overexpression of F3H in VF36 prevented temperature-driven ROS increases and impaired pollen performance, revealing that flavonol biosynthesis promotes thermotolerance. Although stigmas of are had reduced flavonol and elevated ROS levels, the growth of are pollen tubes was similarly impaired in both are and VF36 pistils. RNA-seq was performed at optimal and stress temperatures in are, VF36, and the F3H overexpression line at multiple timepoints across pollen tube elongation. The number of differentially expressed genes increased over time under elevated temperatures in all genotypes, with the greatest number in are. These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that lead to reproductive failure.


Asunto(s)
Flavonoles , Regulación de la Expresión Génica de las Plantas , Germinación , Homeostasis , Tubo Polínico , Polen , Especies Reactivas de Oxígeno , Solanum lycopersicum , Termotolerancia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Flavonoles/metabolismo , Termotolerancia/genética , Polen/genética , Polen/fisiología , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo
2.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38187649

RESUMEN

Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The Solanum lycopersicum anthocyanin reduced ( are ) mutant has a FLAVANONE 3 HYDROXYLASE ( F3H ) gene mutation resulting in impaired synthesis of flavonol antioxidants. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, which is accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent ROS accumulation in pollen and reversed are's reduced viability, germination, and tube elongation to VF36 levels. VF36 transformed with an F3H overexpression construct prevented temperature driven ROS increases and impaired pollen performance, revealing thermotolerance results from elevated flavonol synthesis. Although stigmas of are had reduced flavonols and elevated ROS, the growth of are pollen tubes were similarly impaired in both are and VF36 pistils. RNA-Seq was performed at optimal and stress temperatures in are , VF36, and the VF36 F3H overexpression line at multiple timepoints across pollen tube elongation. Differentially expressed gene numbers increased with duration of elevated temperature in all genotypes, with the largest number in are . These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that leads to reproductive failure. One sentence summary: Flavonol antioxidants reduce the negative impacts of elevated temperatures on pollen performance by reducing levels of heat induced reactive oxygen species and modulation of heat-induced changes in the pollen transcriptome.

3.
PLoS One ; 15(5): e0232981, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32396580

RESUMEN

Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.


Asunto(s)
Equinodermos/fisiología , Receptores Notch/fisiología , Regeneración/fisiología , Estructuras Animales/efectos de los fármacos , Estructuras Animales/fisiología , Animales , Elementos Transponibles de ADN , Dipéptidos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Equinodermos/efectos de los fármacos , Equinodermos/genética , Receptores Notch/antagonistas & inhibidores , Receptores Notch/genética , Regeneración/efectos de los fármacos , Regeneración/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
4.
Front Zool ; 15: 1, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29434647

RESUMEN

BACKGROUND: Brittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of the ophiuroid nervous system. RESULTS: Here, we describe the arm nervous system at different levels of organization, including the microanatomy of the radial nerve cord and peripheral nerves, ultrastructure of the neural tissue, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia, and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components, neuroepithelial organization of the central nervous system, and the supporting scaffold of the neuroepithelium formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled with the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV, and synaptotagmin B. The transcription factor Brn1/2/4 - a marker of neuronal progenitors - is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system. CONCLUSIONS: Together, our data help establish both the general principles of neural architecture common to the phylum Echinodermata and the specific ophiuroid features.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...