Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 7(8): e07777, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34405122

RESUMEN

Viruses cause widely transmitted diseases resulting in pandemic conditions. Currently, the world is being hit by the Covid-19 pandemic caused by the SAR-CoV-2 infection. Countries in the world are competing to develop antivirals to overcome this problem. Diterpene compounds derived from natural ingredients (plants, corals, algae, fungi, sponges) and synthesized products have potential as antivirals. This article summarizes the different types of diterpenes such as daphnane, tiglilane, kaurane, abietane, pimarane, labdane, dollabelane, jatrophane, dolastane, prenylated guaiane, tonantzitlolone, casbane, have antivirals activity such as targeting HIV, Coxsackie virus, herpes virus, hepatitis virus, influenza virus, Chikungunya virus, Zika virus, dengue virus, and SARS-CoV. Some compounds such as andrographolide and its derivatives show promising activity in inhibiting the influenza virus. Additionally, compounds such as pineolidic acid, forskolin, sugiol, and many other diterpene compounds showed anti-SAR-CoV activity. The diterpene compound class's high antivirals potential does not rule out the possibility that these compounds can also act as anti-SAR-CoV-2 drugs in the future.

2.
J Mech Behav Biomed Mater ; 65: 77-89, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27561076

RESUMEN

45S5 Bioglass® (45S5) is one of the most widely used biomaterials in ceramic-based bone graft substitutes by virtue of its excellent biocompatibility and bioactivity. However, the fracture toughness and wear resistance of 45S5 have to be improved to extend its applications in load bearing orthopedic implants. The current study reports the first use of graphene nanoplatelet (GNP) to enhance the fracture toughness and wear resistance of 45S5. Composite powders with four different loadings of graphene oxide (GO), i.e. 0, 0.1, 0.5 and 1wt%, were sintered by spark plasma sintering (SPS) at a relatively low temperature of 550°C, during which in situ thermal reduction of GO took place. It was found that by adding 0.5wt% GO to the 45S5 powder, the fracture toughness of the sintered pellets was increased by 130.2% while friction coefficient and specific wear rate were decreased by 21.3% and 62.0%, respectively. Furthermore, the viability of MG63 cells grown on the GNP-incorporated pellets was comparably high to that of the cells grown on the pure 45S5 pellets. As compared with the pure 45S5 leachates, the media conditioned by the GNP/45S5 pellets fabricated from the composite powder with 1wt% GO could enhance both the proliferation and viability of MG63 cells. It is thus envisioned that the GNP-reinforced 45S5 is a highly promising material for fabricating mechanically strong and biocompatible load-bearing bone implants.


Asunto(s)
Sustitutos de Huesos/análisis , Cerámica/química , Grafito/análisis , Óxidos/análisis , Materiales Biocompatibles/análisis , Línea Celular , Humanos , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...