Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Virol Sin ; 39(3): 369-377, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599520

RESUMEN

Infectious diseases caused by arboviruses are a public health concern in Pakistan. However, studies on data prevalence and threats posed by arboviruses are limited. This study investigated the seroprevalence of arboviruses in a healthy population in Pakistan, including severe fever with thrombocytopenia syndrome virus (SFTSV), Crimean-Congo hemorrhagic fever virus (CCHFV), Tamdy virus (TAMV), and Karshi virus (KSIV) based on a newly established luciferase immunoprecipitation system (LIPS) assays, and Zika virus (ZIKV) by enzyme-linked immunosorbent assays (ELISA). Neutralizing activities against these arboviruses were further examined from the antibody positive samples. The results showed that the seroprevalence of SFTSV, CCHFV, TAMV, KSIV, and ZIKV was 17.37%, 7.58%, 4.41%, 1.10%, and 6.48%, respectively, and neutralizing to SFTSV (1.79%), CCHFV (2.62%), and ZIKV (0.69%) were identified, as well as to the SFTSV-related Guertu virus (GTV, 0.83%). Risk factors associated with the incidence of exposure and levels of antibody response were analyzed. Moreover, co-exposure to different arboviruses was demonstrated, as thirty-seven individuals were having antibodies against multiple viruses and thirteen showed neutralizing activity. Males, individuals aged ≤40 years, and outdoor workers had a high risk of exposure to arboviruses. All these results reveal the substantial risks of infection with arboviruses in Pakistan, and indicate the threat from co-exposure to multiple arboviruses. The findings raise the need for further epidemiologic investigation in expanded regions and populations and the necessity to improve health surveillance in Pakistan.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Arbovirus , Arbovirus , Humanos , Pakistán/epidemiología , Estudios Seroepidemiológicos , Masculino , Femenino , Adulto , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/virología , Anticuerpos Antivirales/sangre , Adulto Joven , Persona de Mediana Edad , Arbovirus/inmunología , Arbovirus/aislamiento & purificación , Adolescente , Niño , Anticuerpos Neutralizantes/sangre , Factores de Riesgo , Anciano , Preescolar , Ensayo de Inmunoadsorción Enzimática
2.
Nanoscale ; 16(18): 8759-8777, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38619821

RESUMEN

Cancer, the leading global cause of mortality, poses a formidable challenge for treatment. The effectiveness of cancer therapies, ranging from chemotherapy to immunotherapy, relies on the precise delivery of therapeutic agents to tumor tissues. Nanobiohybrids, resulting from the fusion of bacteria with nanomaterials, constitute a promising delivery system. Nanobiohybrids offer several advantages, including the ability to target tumors, genetic engineering capabilities, programmed product creation, and the potential for multimodal treatment. Recent advances in targeted tumor treatments have leveraged bacteria-based nanobiohybrids. Here, we outline the progress in cancer treatment using nanobiohybrids. Our focus is particularly on various therapeutic approaches within the context of nanobiohybrid systems, where bacteria are integrated with nanomaterials to combat cancer. It has been demonstrated that bacteria-based nanobiohybrids present a robust and effective method for tumor theranostics.


Asunto(s)
Bacterias , Neoplasias , Neoplasias/terapia , Humanos , Bacterias/metabolismo , Animales , Sistemas de Liberación de Medicamentos , Nanomedicina Teranóstica , Inmunoterapia , Nanoestructuras/química , Nanoestructuras/uso terapéutico
3.
Curr Pharm Des ; 30(4): 295-309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213175

RESUMEN

BACKGROUND: Urolithiasis is a prevalent condition with significant morbidity and economic implications. The economic burden associated with urolithiasis primarily stems from medical expenses. Previous literature suggests that herbal plants, including Cucurbita pepo, have lithotriptic capabilities. C. pepo is an annual, herbaceous, widely grown, and monoecious vegetative plant known for its antioxidants, fibers, and fatty acids. Recent studies on C. pepo seeds have shown therapeutic potential in reducing bladder stones and urodynamic illnesses, like kidney stones. However, the precise molecular and pharmacological mechanisms are unclear. OBJECTIVE: In this research, we employed network pharmacology and molecular docking to examine the active compounds and biological mechanisms of Cucurbita pepo against kidney stones. METHODS: Active constituents were obtained from previous studies and the IMPPAT database, with their targets predicted using Swiss target prediction. Kidney stone-associated genes were collected from DisGeNET and GeneCards. The active constituent-target-pathway network was constructed using Cytoscape, and the target protein-protein interaction network was generated using the STRING database. Gene enrichment analysis of C. pepo core targets was conducted using DAVID. Molecular docking was performed to identify potential kidney stone-fighting agents. RESULTS: The findings revealed that Cucurbita pepo contains 18 active components and has 192 potential gene targets, including AR, EGFR, ESR1, AKT1, MAPK3, SRC, and MTOR. Network analysis demonstrated that C. pepo seeds may prevent kidney stones by influencing disease-related signaling pathways. Molecular docking indicated that key kidney stone targets (mTOR, EGFR, AR, and ESR1) effectively bind with active constituents of C. pepo. CONCLUSION: These findings provide insight into the anti-kidney stone effects of Cucurbita pepo at a molecular level. In conclusion, this study contributes to understanding the potential of Cucurbita pepo in combating kidney stones and lays the foundation for further research.


Asunto(s)
Cucurbita , Cálculos Renales , Simulación del Acoplamiento Molecular , Farmacología en Red , Semillas , Cucurbita/química , Cálculos Renales/tratamiento farmacológico , Semillas/química , Humanos
4.
Cureus ; 15(9): e45587, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37868395

RESUMEN

Radiology has been a pioneer in the healthcare industry's digital transformation, incorporating digital imaging systems like picture archiving and communication system (PACS) and teleradiology over the past thirty years. This shift has reshaped radiology services, positioning the field at a crucial junction for potential evolution into an integrated diagnostic service through artificial intelligence and machine learning. These technologies offer advanced tools for radiology's transformation. The radiology community has advanced computer-aided diagnosis (CAD) tools using machine learning techniques, notably deep learning convolutional neural networks (CNNs), for medical image pattern recognition. However, the integration of CAD tools into clinical practice has been hindered by challenges in workflow integration, unclear business models, and limited clinical benefits, despite development dating back to the 1990s. This comprehensive review focuses on detecting chest-related diseases through techniques like chest X-rays (CXRs), magnetic resonance imaging (MRI), nuclear medicine, and computed tomography (CT) scans. It examines the utilization of computer-aided programs by researchers for disease detection, addressing key areas: the role of computer-aided programs in disease detection advancement, recent developments in MRI, CXR, radioactive tracers, and CT scans for chest disease identification, research gaps for more effective development, and the incorporation of machine learning programs into diagnostic tools.

5.
Heliyon ; 9(9): e20017, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809953

RESUMEN

Background: Diabetes mellitus is a commonly occurring metabolic disorder accompanied by high morbidity and alarming mortality. Besides various available therapies, induction of pancreatic regeneration has emerged as a promising strategy for alleviating the damaging effect of diabetes. Honey, a potent antioxidative and anti-inflammatory agent, has been reported in the literature archive to exhibit favourable results in the regeneration process of several organ systems. Design: The current research work was intended to explore the potential role of manuka honey in pancreatic regeneration in alloxan-induced diabetic rats by accessing the pancreatic histology and levels of relevant transcription factors, including MAFA, PDX-1, INS-1, INS-2, NEUROG3, NKX6-1, and NEUROD. An equal number of rats were allocated to all four experimental groups: normal, negative control, positive control, and treatment group. Diabetes was induced in all groups except normal through a single intraperitoneal dose of alloxan monohydrate. No subsequent treatment was given to the negative control group, while the positive control and treatment groups were supplemented with metformin (150 mg/kg/day) and manuka honey (3 g/kg/day), respectively. Results: Statistical comparison of glucose and insulin levels, oxidative stress indicators, changes in the architecture of pancreatic islets, and expression levels of regeneration-associated transcription factors advocated the potential role of manuka honey in ameliorating the alloxan-induced hyperglycaemia, hyperinsulinemia, oxidative stress, and necrotic changes in islets along with significant upregulation of relevant transcription factors. Conclusion: This suggests to us the auspicious role of antioxidants in honey in pancreatic regeneration and advocates the favourable role of manuka honey in combating diabetes mellitus.

6.
Pathogens ; 12(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37513746

RESUMEN

Acinetobacter baumannii, a pathogenic bacterium acquired in hospitals, causes diverse infections in humans. Previous studies have reported resistance among A. baumannii strains, potentially selecting multi-drug-resistant variants. In Pakistan, research has primarily focused on carbapenem-resistant A. baumannii (CRAB) strains, overlooking the investigation of efflux pumps (EPs) and biocide resistance. This study aims to assess A. baumannii strains from five hospitals in Pakistan, focusing on antibiotic and biocide susceptibility, the impact of EP inhibitors on antimicrobial susceptibility, and the distribution of ARGs and STs. A total of 130 non-repeated Acinetobacter baumannii isolates were collected from five tertiary care hospitals in Pakistan and identified using API 20NE and multiplex PCR. Antimicrobial susceptibility testing utilized disc diffusion and broth microdilution assays, while biocide susceptibility was assessed with various agents. The impact of an efflux pump inhibitor (NMP) on antibiotic susceptibility was evaluated. PCR screening for ARGs and EPGs was followed by DNA sequencing validation. MLST was performed using the Pasteur scheme. Most isolates demonstrated resistance to tested antibiotics, with varying levels of susceptibility to biocides. All isolates exhibited the intrinsic class D ß-lactamase blaOXA-51, while acquired blaOXA-23 was present in all CRAB isolates. Among EPs, adeJ, abeD, amvA, and aceI were prevalent in almost all isolates, with adeB found in 93% of isolates and adeG, adeT1, adeT2, and qacEΔ1 displaying lower prevalence ranging from 65% to 79%. The most common STs were ST589 and ST2, accounting for 28.46% and 25.38% of isolates, respectively, followed by ST642 at 12.6%. These findings indicate that A. baumannii strains in Pakistan are resistant to antibiotics (excluding colistin and tigecycline) and may be developing biocide resistance, which could contribute to the selection and dissemination of multi-drug-resistant strains.

7.
Int J Biol Macromol ; 248: 125989, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499726

RESUMEN

Hydrogels, a type of polymeric material capable of retaining water within a three-dimensional network, have demonstrated their potential in wound healing, surpassing traditional wound dressings. These hydrogels possess remarkable mechanical, chemical, and biological properties, making them suitable scaffolds for tissue regeneration. This article aims to emphasize the advantages of alginate, silk fibroin, and hydrogel-based wound dressings, specifically highlighting their crucial functions that accelerate the healing process of skin wounds. Noteworthy functions include self-healing ability, water solubility, anti-inflammatory properties, adhesion, antimicrobial properties, drug delivery, conductivity, and responsiveness to stimuli. Moreover, recent advancements in hydrogel technology have resulted in the development of wound dressings with enhanced features for monitoring wound progression, further augmenting their effectiveness. This review emphasizes the utilization of hydrogel membranes for treating excisional and incisional wounds, while exploring recent breakthroughs in hydrogel wound dressings, including nanoparticle composite hydrogels, stem cell hydrogel composites, and curcumin-hydrogel composites. Additionally, the review focuses on diverse synthesis procedures, designs, and potential applications of hydrogels in wound healing dressings.


Asunto(s)
Fibroínas , Fibroínas/química , Hidrogeles/química , Alginatos/química , Vendajes , Agua
8.
Front Microbiol ; 14: 1188743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323910

RESUMEN

The aim of this study was to provide a comparative analysis of chitosan (CH), copper oxide (CuO), and chitosan-based copper oxide (CH-CuO) nanoparticles for their application in the healthcare sector. The nanoparticles were synthesized by a green approach using the extract of Trianthema portulacastrum. The synthesized nanoparticles were characterized using different techniques, such as the synthesis of the particles, which was confirmed by UV-visible spectrometry that showed absorbance at 300 nm, 255 nm, and 275 nm for the CH, CuO, and CH-CuO nanoparticles, respectively. The spherical morphology of the nanoparticles and the presence of active functional groups was validated by SEM, TEM, and FTIR analysis. The crystalline nature of the particles was verified by XRD spectrum, and the average crystallite sizes of 33.54 nm, 20.13 nm, and 24.14 nm were obtained, respectively. The characterized nanoparticles were evaluated for their in vitro antibacterial and antibiofilm potential against Acinetobacter baumannii isolates, where potent activities were exhibited by the nanoparticles. The bioassay for antioxidant activity also confirmed DPPH scavenging activity for all the nanoparticles. This study also evaluated anticancer activities of the CH, CuO, and CH-CuO nanoparticles against HepG2 cell lines, where maximum inhibitions of 54, 75, and 84% were recorded, respectively. The anticancer activity was also confirmed by phase contrast microscopy, where the treated cells exhibited deformed morphologies. This study demonstrates the potential of the CH-CuO nanoparticle as an effective antibacterial agent, having with its antibiofilm activity, and in cancer treatment.

9.
Can J Infect Dis Med Microbiol ; 2023: 3995366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261378

RESUMEN

Dengue fever is a viral infection caused by the dengue virus and is a growing concern for public health worldwide, particularly in tropical and subtropical regions. This study aimed to assess the diagnostic accuracy of a commercially available NS1 ELISA kit for dengue fever in Pakistan using multiplex qRT-PCR as the gold standard. The study recruited 1236 suspected cases of dengue fever admitted to public sector hospitals in Lahore, Pakistan. Of the suspected cases, 610 (49.3%) were confirmed positive for DENV infection through qRT-PCR, with all four serotypes detected. DENV-2 was the most prevalent serotype, detected in 95.7% of cases. The NS1 ELISA kit detected 71.1% of the positive cases. However, the diagnostic accuracy of the NS1 ELISA kit was found to be only 64.89%. Of the 610 confirmed cases, 68% were male and 32% were female, with a median age of 30 years. Dengue fever was diagnosed in 91.8% of cases, while 8.2% were diagnosed with dengue hemorrhagic fever (DHF). DHF patients had a higher prevalence of abdominal pain, hemorrhagic manifestations, and thrombocytopenia. The cocirculation of all four DENV serotypes in Lahore is concerning and could lead to more severe forms of the disease, such as DHF or dengue shock syndrome, in the future. The study highlights the low diagnostic accuracy of commercially available NS1 ELISA kits and emphasizes the importance of using molecular methods to confirm acute dengue infections. Given the increasing prevalence of dengue fever in developing countries like Pakistan, more accurate and reliable diagnostic tools are needed for effective disease management and control.

10.
Antibiotics (Basel) ; 12(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237715

RESUMEN

Avian pathogenic Escherichia coli (APEC) is responsible for significant economic losses in the poultry industry. This study aimed to molecularly detect carbapenem-resistant co-harboring mcr-1 avian pathogenic E. coli in broiler chickens infected with colibacillosis. A total of 750 samples were collected from colibacillosis-infected broilers, and conventional microbiological techniques were used to isolate and identify APEC. MALDI-TOF and virulence-associated genes (VAGs) were used for further identification. Phenotypic carbapenem resistance profiling was followed by molecular detection of carbapenem resistance genes (CRGs) and other resistance genes through PCR using specific primers. Isolates were also subjected to PCR for O typing, followed by allele-specific PCR to detect sequence type (ST) 95. Results showed that 154 (37%) isolates were confirmed as APEC, with 13 (8.4%) isolates found to be carbapenem-resistant (CR)-APEC. Among CR-APEC isolates, 5 (38%) were observed to co-harbor mcr-1. All CR-APEC showed the presence of five markers (ompT, hylF, iutA, iroN, and iss) APEC VAGs, and 89% of CR-APEC isolates displayed O78 type. Furthermore, 7 (54%) CR-APEC isolates were observed with ST95, all displaying O78 type. These results suggest that the improper use of antibiotics in poultry production systems is contributing to the emergence of pathogens such as CR-APEC co-harboring the mcr-1 gene.

11.
Int J Biol Macromol ; 242(Pt 3): 124954, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211075

RESUMEN

Biopolymer based metal oxide nanoparticles, prepared by eco-friendly approach, are gaining interest owing to their wide range of applications. In this study, aqueous extract of Trianthema portulacastrum was used for the green synthesis of chitosan base copper oxide (CH-CuO) nanoparticles. The nanoparticles were characterized through UV-Vis Spectrophotometry, SEM, TEM, FTIR and XRD analysis. These techniques provided evidence for the successful synthesis of the nanoparticles, having poly-dispersed spherical shaped morphology with average crystallite size of 17.37 nm. The antibacterial activity for the CH-CuO nanoparticles was determined against multi-drug resistant (MDR), Escherichia coli, Pseudomonas aeruginosa (gram-negative), Enterococcus faecium and Staphylococcus aureus (gram-positive). Maximum activity was obtained against Escherichia coli (24 ± 1.99 mm) while least activity was observed against Staphylococcus aureus (17 ± 1.54 mm). In-vitro analysis for biofilm inhibition, EPS and cell surface hydrophobicity showed >60 % inhibitions for all the bacterial isolates. Antioxidant and photocatalytic assays for the nanoparticles showed significant activities of radical scavenging (81 ± 4.32 %) and dye degradation (88 %), respectively. Antidiabetic activity for the nanoparticles, determined by in-vitro analysis of alpha amylase inhibition, showed enzyme inhibition of 47 ± 3.29 %. The study signifies the potential of CH-CuO nanoparticle as an effective antimicrobial agent against MDR bacteria along with the antidiabetic and photocatalytic activities.


Asunto(s)
Aizoaceae , Antiinfecciosos , Quitosano , Nanopartículas del Metal , Antioxidantes/farmacología , Cobre/farmacología , Quitosano/farmacología , Hipoglucemiantes/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Bacterias , Óxidos/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana
12.
Biotechnol Lett ; 45(2): 137-162, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504266

RESUMEN

Antimicrobial peptides (AMPs) are a potential alternative to antimicrobial agents that have got considerable research interest owing to their significant role in the inhibition of bacterial pathogens. These AMPs can essentially inhibit the growth and multiplication of microbes through multiple mechanisms including disruption of cellular membranes, inhibition of cell wall biosynthesis, or affecting intracellular components and cell division. Moreover, AMPs are biocompatible and biodegradable therefore, they can be a good alternative to antimicrobial agents and chemical preservatives. A few of their features for example thermostability and high selectivity are quite appealing for their potential use in the food industry for food preservation to prevent the spoilage caused by microorganisms and foodborne pathogens. Despite these advantages, very few AMPs are being used at an industrial scale for food preservation as these peptides are quite vulnerable to external environmental factors which deter their practical applications and commercialization. The review aims to provide an outline of the mechanism of action of AMPs and their prospects as an alternative to chemical preservatives in the food industry. Further studies related to the structure-activity relationship of AMPs will help to expand the understanding of their mechanism of action and to determine specific conditions to increase their stability and applicability in food preservation.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Antiinfecciosos/farmacología , Conservación de Alimentos , Inocuidad de los Alimentos , Conservantes de Alimentos/farmacología
13.
Saudi J Biol Sci ; 30(2): 103527, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36568408

RESUMEN

Asthma is a significant health-care burden that has great impact on the quality of life of patients and their families. The limited amount of previously reported data and complicated pathophysiology of asthma make it a difficult to treat and significant economic burden on public healthcare systems. Ferula asafoetida is an herbaceous, monoecious, perennial plant of the Umbelliferae family. In Asia, F. asafoetida is used to treat a range of diseases and disorders, including asthma. Several in vitro studies demonstrated the therapeutic efficacy of F. asafoetida against asthma. Nevertheless, the precise molecular mechanism is yet to be discovered. In the framework of current study, network pharmacology approach was used to identify the bioactive compounds of F. asafoetida in order to better understand its molecular mechanism for the treatment of asthma. In present work, we explored a compound-target-pathway network and discovered that assafoetidin, cynaroside, farnesiferol-B, farnesiferol-C, galbanic-acid, and luteolin significantly influenced the development of asthma by targeting MAPK3, AKT1 and TNF genes. Later, docking analysis revealed that active constituents of F. asafoetida bind stably with three target proteins and function as asthma repressor by regulating the expression of MAPK3, AKT1 and TNF genes. Thus, integration of network pharmacology with molecular docking revealed that F. asafoetida prevent asthma by modulating asthma-related signaling pathways. This study lays the basis for establishing the efficacy of multi-component, multi-target compound formulae, as well as investigating new therapeutic targets for asthma.

14.
Pharmaceutics ; 14(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36559262

RESUMEN

Toward the search for novel antimicrobial agents to control pathogenic E. coli-associated infections, a series of novel norfloxacin derivatives were screened for antimicrobial activities. The norfloxacin derivative, 1-ethyl-6-fluoro-7-(4-(2-(2-(3-hydroxybenzylidene)hydrazinyl)-2-oxoethyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (NF22) demonstrated excellent antibacterial activities against E. coli ATCC 25922 (MIC = 0.0625 µg/mL) and MDR E. coli 1-3 (MIC = 1, 2 and 1 µg/mL). The time-kill kinetic studies have demonstrated that the NF22 was advantageous over norfloxacin and ciprofloxacin in killing the control and MDR E. coli strains. The checkerboard assay showed that NF22 in combination with tetracycline had a synergistic effect against the E. coli strains. The experimental findings are supported by molecular modeling studies on DNA gyrase, explaining the interactions involved for compound NF22, compared to norfloxacin and ciprofloxacin. Further, the compound was also evaluated for various pharmacokinetics (absorption, metabolism, distribution, toxicity and excretion) as well as drug-likeness properties. Our data have highlighted the potential of norfloxacin by restoring its efficacy against E. coli which could lead to the development of new antimicrobial agents.

15.
Front Mol Biosci ; 9: 1038830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330221

RESUMEN

During the previous few years, the relationship between the gut microbiota, metabolic disorders, and diet has come to light, especially due to the understanding of the mechanisms that particularly link the gut microbiota with obesity in animal models and clinical trials. Research has led to the understanding that the responses of individuals to dietary inputs vary remarkably therefore no single diet can be suggested to every individual. The variations are attributed to differences in the microbiome and host characteristics. In general, it is believed that the immanent nature of host-derived factors makes them difficult to modulate. However, diet can more easily shape the microbiome, potentially influencing human physiology through modulation of digestion, absorption, mucosal immune response, and the availability of bioactive compounds. Thus, diet could be useful to influence the physiology of the host, as well as to ameliorate various disorders. In the present study, we have described recent developments in understanding the disparities of gut microbiota populations between individuals and the primary role of diet-microbiota interactions in modulating human physiology. A deeper understanding of these relationships can be useful for proposing personalized nutrition strategies and nutrition-based therapeutic interventions to improve human health.

17.
Infect Drug Resist ; 15: 5795-5811, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213765

RESUMEN

Background: The World Health Organization (WHO) has declared the multi-drug resistant (MDR) Klebsiella pneumoniae as one of the critical bacterial pathogens. The dearth of new antibiotics and inadequate therapeutic options necessitate finding alternative options. Bacteriophages are known as enemies of bacteria and are well-recognized to fight MDR pathogens. Methods: A total of 150 samples were collected from different clinical specimens through a convenient sampling technique. Isolation, identification, and antibiotic susceptibility testing (AST) of K. pneumoniae were done by standard and validated microbiological procedures. Molecular identification of virulence factors and antibiotic resistance genes (ARGs) was carried out through polymerase chain reaction (PCR) by using specific primers. For bacteriophage isolation, hospital sewage samples were processed for phage enrichment, purification, and further characterization ie, transmission electron microscopy (TEM) and stability testing, etc. followed by evaluation of the lytic potential of the phage. Results: Overall, a total of 41% of isolates of K. pneumoniae were observed as hypervirulent K. pneumoniae (hvKp). Among hvKp, a total of 12 (42%) were detected as MDR hvKp. A total of 37% of all MDR isolates were found resistant to colistin, and 66% of the colistin resistance isolates were recorded as mcr-1 positive. Isolated phage KpnM had shown lytic activity against 53 (79%) K. pneumoniae isolates. Remarkably, all 8 mcr-1 harboring MDR hvKp and non-hvKp isolates were susceptible to KpnM phage. Conclusion: Significant distribution of mcr-1 harboring hypervirulent Klebsiella pneumoniae was observed in clinical specimens, which is worrisome for the health system of the country. Characterized phage KpnM exhibited encouraging results and showed the lytic activity against the mcr-1 harboring hvKp isolates, which may be used as a prospective alternative control strategy to fight this ominous bacterium.

18.
Drug Dev Ind Pharm ; 48(9): 502-509, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36191015

RESUMEN

The worldwide increase of multi-drug resistance has directed the researchers to focus on ecofriendly ways of nanoparticles synthesis with effective antivirulence properties. Here, we report the antibiofilm and quorum quenching (QQ) potential of zirconium oxide nanoparticles (ZrO2 NPs) synthesized from aqueous ginger extract against multi-drug resistant (MDR) Acinetobacter baumannii. The results indicated that ZrO2 NPs were of tetragonal shape with average diameter of 16 nm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for A. baumannii were 15.6 and 62.5 µg/ml, respectively, as revealed by broth microdilution assay. Exposure of bacterial cells to ZrO2 NPs resulted in reactive oxygen species (ROS) generation which in turn led to cellular membrane disruption as observed by an increase in leakage of cellular contents, such as proteins, sugars, and DNA. The antibiofilm activity was evaluated by microtiter plate assay and the results revealed that the percentage inhibition of biofilm was found to be 14.3-80.6%. ZrO2 NPs also obstructed the chemical composition of biofilms matrix by reducing the proteins and carbohydrate contents. Molecular docking studies of ZrO2 NPs with four proteins (2NAZ, 4HKG, 5D6H, and 5HM6) involved in biofilm formation of A. baumannii revealed the interaction of zirconium with target proteins. These findings suggested the in vitro efficacy of phytosynthesized ZrO2 NPs as antibiofilm and QQ agents that can be exploited in the development of alternative therapeutic options against MDR A. baumannii.


Asunto(s)
Acinetobacter baumannii , Nanopartículas del Metal , Nanopartículas , Percepción de Quorum , Circonio/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Biopelículas , Nanopartículas del Metal/química
19.
Biomed Res Int ; 2022: 8224883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246985

RESUMEN

Background: The emergence of resistance to beta-lactam agents in poultry results in multidrug-resistant (MDR) phenotypes in Escherichia coli isolates from poultry birds. The appearance of mobile colistin resistance (mcr) genes in the poultry sector has further worsened the situation. Therefore, the current study is aimed at investigating the molecular epidemiology of mcr harboring colistin-resistant E. coli among poultry. Methods: The isolation and identification of colistin-resistant E. coli (CR-Ec) were done from the broiler's fecal samples through culturing using selective media supplemented with colistin sulfate (4 µg/ml). The antibiogram studies of the isolates were performed using the disc diffusion method and broth microdilution method as per CLSI guidelines. The screening for the genes conferring resistance to colistin as well as beta-lactam agents was performed by PCR. The genetic diversity of mcr-positive strains was assessed by multilocus sequencing typing (MLST). Results: Out of 500 fecal samples, 7% (35/500) were found positive for the presence of colistin-resistant E. coli (CR-Ec). Among the CR-Ec isolates, 74.28% (26/35) were detected as ESBL producers carrying the blaCTX-M-1 gene in 15/35 (42.85%) isolates and blaCTX-M-15 and blaTEM genes in 21/35 (60%) and 35/35 (100%) isolates, respectively. E. coli isolates were found positive for the presence of mcr-1, although none of the isolates exhibited the mcr-2 or mcr-3 genes. The MLST of CR-Ec has shown the ST1035 as the most prevalent genotype, while 82.85% (29/35) of CR-Ec strains belonged to clonal complex (CC) 131 comprising ST1035, ST131, ST1215, ST1650, and ST2279. Conclusions: The findings suggest a continuous monitoring system in veterinary and clinical settings to avoid unnecessary antibiotics. Further studies are needed at the national level to help control the increasing resistance among Enterobacterales in poultry settings.


Asunto(s)
Farmacorresistencia Bacteriana , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Antibacterianos/farmacología , Pollos/genética , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Variación Genética , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Aves de Corral , beta-Lactamasas/genética , beta-Lactamas
20.
Biomed Res Int ; 2022: 4975721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164443

RESUMEN

Legionella pneumophila is found in the natural aquatic environment and can resist a wide range of environmental conditions. There are around fifty species of Legionella, at least twenty-four of which are directly linked to infections in humans. L. pneumophila is the cause of Legionnaires' disease, a potentially lethal form of pneumonia. By blocking phagosome-lysosome fusion, L. pneumophila lives and proliferates inside macrophages. For this disease, there is presently no authorized multiepitope vaccine available. For the multi-epitope-based vaccine (MEBV), the best antigenic candidates were identified using immunoinformatics and subtractive proteomic techniques. Several immunoinformatics methods were utilized to predict B and T cell epitopes from vaccine candidate proteins. To construct an in silico vaccine, epitopes (07 CTL, 03 HTL, and 07 LBL) were carefully selected and docked with MHC molecules (MHC-I and MHC-II) and human TLR4 molecules. To increase the immunological response, the vaccine was combined with a 50S ribosomal adjuvant. To maximize vaccine protein expression, MEBV was cloned and reverse-translated in Escherichia coli. To prove the MEBV's efficacy, more experimental validation is required. After its development, the resulting vaccine is greatly hoped to aid in the prevention of L. pneumophila infections.


Asunto(s)
Vacunas Bacterianas , Legionella pneumophila , Enfermedad de los Legionarios , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Legionella pneumophila/genética , Legionella pneumophila/inmunología , Enfermedad de los Legionarios/prevención & control , Proteómica , Receptor Toll-Like 4/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...