Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38187525

RESUMEN

Artemisinin (ART) combination therapies have been critical in reducing malaria morbidity and mortality, but these important drugs are threatened by growing resistance associated with mutations in Pfcoronin and Pfkelch13 . Here, we describe the mechanism of Pfcoronin -mediated ART resistance. Pf Coronin interacts with Pf Actin and localizes to the parasite plasma membrane (PPM), the digestive vacuole (DV) membrane, and membrane of a newly identified preDV compartment-all structures involved in the trafficking of hemoglobin from the RBC for degradation in the DV. Pfcoronin mutations alter Pf Actin homeostasis and impair the development and morphology of the preDV. Ultimately, these changes are associated with decreased uptake of red blood cell cytosolic contents by ring-stage Plasmodium falciparum . Previous work has identified decreased hemoglobin uptake as the mechanism of Pfkelch 13-mediated ART resistance. This work demonstrates that Pf Coronin appears to act via a parallel pathway. For both Pfkelch13 -mediated and Pfcoronin -mediated ART resistance, we hypothesize that the decreased hemoglobin uptake in ring stage parasites results in less heme-based activation of the artemisinin endoperoxide ring and reduced cytocidal activity. This study deepens our understanding of ART resistance, as well as hemoglobin uptake and development of the DV in early-stage parasites.

2.
Nature ; 595(7865): 96-100, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34040257

RESUMEN

Trypanosomes are protozoan parasites that cause infectious diseases, including African trypanosomiasis (sleeping sickness) in humans and nagana in economically important livestock1,2. An effective vaccine against trypanosomes would be an important control tool, but the parasite has evolved sophisticated immunoprotective mechanisms-including antigenic variation3-that present an apparently insurmountable barrier to vaccination. Here we show, using a systematic genome-led vaccinology approach and a mouse model of Trypanosoma vivax infection4, that protective invariant subunit vaccine antigens can be identified. Vaccination with a single recombinant protein comprising the extracellular region of a conserved cell-surface protein that is localized to the flagellum membrane (which we term 'invariant flagellum antigen from T. vivax') induced long-lasting protection. Immunity was passively transferred with immune serum, and recombinant monoclonal antibodies to this protein could induce sterile protection and revealed several mechanisms of antibody-mediated immunity, including a major role for complement. Our discovery identifies a vaccine candidate for an important parasitic disease that has constrained socioeconomic development in countries in sub-Saharan Africa5, and provides evidence that highly protective vaccines against trypanosome infections can be achieved.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas Antiprotozoos/inmunología , Trypanosoma vivax/inmunología , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/prevención & control , Animales , Antígenos de Protozoos/química , Proteínas del Sistema Complemento/inmunología , Secuencia Conservada/inmunología , Modelos Animales de Enfermedad , Femenino , Flagelos/química , Flagelos/inmunología , Ratones , Ratones Endogámicos BALB C , Vacunas Antiprotozoos/química , Factores de Tiempo , Trypanosoma vivax/química , Trypanosoma vivax/citología , Tripanosomiasis Africana/parasitología , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...