Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
EMBO J ; 30(24): 4860-73, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22085932

RESUMEN

It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O(2) at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F(1)F(0) ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential.


Asunto(s)
Diferenciación Celular , Metabolismo Energético , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Adenosina Trifosfato , Línea Celular , Glucólisis , Humanos , Hidrólisis , Canales Iónicos/genética , Proteínas Mitocondriales/genética , Consumo de Oxígeno , Células Madre Pluripotentes/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 2
3.
Hum Mol Genet ; 20(6): 1212-23, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21228000

RESUMEN

A large number of mutations in the gene encoding the catalytic subunit of mitochondrial DNA polymerase γ (POLγA) cause human disease. The Y955C mutation is common and leads to a dominant disease with progressive external ophthalmoplegia and other symptoms. The biochemical effect of the Y955C mutation has been extensively studied and it has been reported to lower enzyme processivity due to decreased capacity to utilize dNTPs. However, it is unclear why this biochemical defect leads to a dominant disease. Consistent with previous reports, we show here that the POLγA:Y955C enzyme only synthesizes short DNA products at dNTP concentrations that are sufficient for proper function of wild-type POLγA. In addition, we find that this phenotype is overcome by increasing the dNTP concentration, e.g. dATP. At low dATP concentrations, the POLγA:Y955C enzyme stalls at dATP insertion sites and instead enters a polymerase/exonuclease idling mode. The POLγA:Y955C enzyme will compete with wild-type POLγA for primer utilization, and this will result in a heterogeneous population of short and long DNA replication products. In addition, there is a possibility that POLγA:Y955C is recruited to nicks of mtDNA and there enters an idling mode preventing ligation. Our results provide a novel explanation for the dominant mtDNA replication phenotypes seen in patients harboring the Y955C mutation, including the existence of site-specific stalling. Our data may also explain why mutations that disturb dATP pools can be especially deleterious for mtDNA synthesis.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación Missense , Oftalmoplejía Externa Progresiva Crónica/enzimología , Línea Celular , ADN Polimerasa gamma , Replicación del ADN , ADN Mitocondrial/genética , Humanos , Oftalmoplejía Externa Progresiva Crónica/genética
4.
Cell Stem Cell ; 5(1): 111-23, 2009 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-19570518

RESUMEN

Induced pluripotent stem cells (iPSCs) outwardly appear to be indistinguishable from embryonic stem cells (ESCs). A study of gene expression profiles of mouse and human ESCs and iPSCs suggests that, while iPSCs are quite similar to their embryonic counterparts, a recurrent gene expression signature appears in iPSCs regardless of their origin or the method by which they were generated. Upon extended culture, hiPSCs adopt a gene expression profile more similar to hESCs; however, they still retain a gene expression signature unique from hESCs that extends to miRNA expression. Genome-wide data suggested that the iPSC signature gene expression differences are due to differential promoter binding by the reprogramming factors. High-resolution array profiling demonstrated that there is no common specific subkaryotypic alteration that is required for reprogramming and that reprogramming does not lead to genomic instability. Together, these data suggest that iPSCs should be considered a unique subtype of pluripotent cell.


Asunto(s)
Células Madre Embrionarias/metabolismo , Expresión Génica , Células Madre Pluripotentes/metabolismo , Animales , Línea Celular , Metilación de ADN , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Inestabilidad Genómica , Histonas/genética , Humanos , Ratones , MicroARNs/metabolismo , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas
5.
J Vis Exp ; (16)2008 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19066543

RESUMEN

This video demonstrates how to grow human embryonic stem cells (hESCs) on mouse embryonic fibroblast (MEF) feeder cells, how to passage hESCs from MEF plates to feeder cell-free Matrigel plates.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Colágeno , Células Madre Embrionarias/citología , Fibroblastos/citología , Laminina , Proteoglicanos , Animales , Combinación de Medicamentos , Embrión de Mamíferos , Humanos , Ratones
6.
J Vis Exp ; (16)2008 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-19066542

RESUMEN

This video demonstrates how to maintain the growth of human embryonic stem cells (hESCs) in feeder cell-free conditions and how to continuously passage hESCs in feeder cell-free conditions. Confirmation of hESC pluripotency grown in feeder cell-free conditions by immunofluorescence microscopy is also demonstrated.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Colágeno , Células Madre Embrionarias/citología , Fibroblastos/citología , Laminina , Proteoglicanos , Animales , Combinación de Medicamentos , Embrión de Mamíferos , Humanos , Ratones
7.
J Vis Exp ; (16)2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19066553

RESUMEN

Mitochondria are cytoplasmic organelles that have a primary role in cellular metabolism and homeostasis, regulation of the cell signaling network, and programmed cell death. Mitochondria produce ATP, regulate the cytoplasmic redox state and Ca2+ balance, catabolize fatty acids, synthesize heme, nucleotides, steroid hormones, amino acids, and help assemble iron-sulfur clusters in proteins. Mitochondria also have an essential role in heat production. Mutations of the mitochondrial genome cause several types of human disorder. The accumulation of mtDNA mutations correlates with aging and is suspected to have an important role in the development of cancer. Due to their vitally important role in all cell types, the function of mitochondria must also be critical for stem cells. Key advances have been made in our understanding of stem cell viability, proliferation, and differentiation capacity. But the functional activity of stem cells, in particular their energy status, was not yet been studied in detail. Almost nothing is known about the mitochondrial properties of human embryonic stem cells (hESCs) and their differentiated precursor progeny. One way to understand and evaluate the role of mitochondria in hESC function and developmental potential is to directly measure the activity of mitochondrial respiratory complexes. Here, we describe high resolution clear native gel electrophoresis and subsequent in gel activity visualization as a method for analyzing the five respiratory chain complexes of hESCs.


Asunto(s)
Electroforesis/métodos , Células Madre Embrionarias/fisiología , Mitocondrias/fisiología , Humanos
8.
J Vis Exp ; (16)2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-19066554

RESUMEN

This video demonstrates how to grow human embryonic stem cells (hESCs) on mouse embryonic fibroblast (MEF) feeder cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Colágeno , Fibroblastos/citología , Laminina , Células Madre Neoplásicas/citología , Proteoglicanos , Animales , Combinación de Medicamentos , Embrión de Mamíferos , Humanos , Ratones
9.
Proc Natl Acad Sci U S A ; 102(50): 17993-8, 2005 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-16332961

RESUMEN

The mitochondrial theory of aging proposes that reactive oxygen species (ROS) generated inside the cell will lead, with time, to increasing amounts of oxidative damage to various cell components. The main site for ROS production is the respiratory chain inside the mitochondria and accumulation of mtDNA mutations, and impaired respiratory chain function have been associated with degenerative diseases and aging. The theory predicts that impaired respiratory chain function will augment ROS production and thereby increase the rate of mtDNA mutation accumulation, which, in turn, will further compromise respiratory chain function. Previously, we reported that mice expressing an error-prone version of the catalytic subunit of mtDNA polymerase accumulate a substantial burden of somatic mtDNA mutations, associated with premature aging phenotypes and reduced lifespan. Here we show that these mtDNA mutator mice accumulate mtDNA mutations in an approximately linear manner. The amount of ROS produced was normal, and no increased sensitivity to oxidative stress-induced cell death was observed in mouse embryonic fibroblasts from mtDNA mutator mice, despite the presence of a severe respiratory chain dysfunction. Expression levels of antioxidant defense enzymes, protein carbonylation levels, and aconitase enzyme activity measurements indicated no or only minor oxidative stress in tissues from mtDNA mutator mice. The premature aging phenotypes in mtDNA mutator mice are thus not generated by a vicious cycle of massively increased oxidative stress accompanied by exponential accumulation of mtDNA mutations. We propose instead that respiratory chain dysfunction per se is the primary inducer of premature aging in mtDNA mutator mice.


Asunto(s)
Envejecimiento/genética , ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo , Análisis de Varianza , Animales , Apoptosis/genética , Northern Blotting , Western Blotting , Células Cultivadas , Análisis Mutacional de ADN , Fibroblastos/metabolismo , Ratones , Ratones Mutantes , Estrés Oxidativo/genética , Consumo de Oxígeno/fisiología , Carbonilación Proteica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...