Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharm Dev Technol ; 28(7): 660-677, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37417773

RESUMEN

The efficacy and safety of chemotherapy are two major challenges when it comes to treating ovarian cancer. The associated undesirable side effects of chemotherapy agents jeopardize the clinical intent and the efficiency of the therapy. Multiple studies have been published describing new developments and novel strategies utilizing the latest therapeutic and drug delivery technologies to address the efficacy and safety of chemotherapeutics in ovarian cancers. We have identified five novel technologies that are available and, if used, have the potential to mitigate the above-mentioned challenges. Nanocarriers in different forms (Nano-gel, Aptamer, peptide medicated formulations, Antibody-drug conjugation, surface charge, and nanovesicle technologies) are developed and available to be employed to target the cancerous tissue. These strategies are promising to improve clinical efficacy and reduce side effects. We have systematically searched and analyzed published data, as well as the authors intent for the described technology on each publication. We narrowed to 81 key articles and extracted their data to be discussed in this review. In summary, the selected articles investigated the pharmacokinetic properties of drugs combined with nanocarriers and found significant improvement in efficacy and safety by reducing the IC50 values and drug doses. These key papers described promising novel technologies in anti-cancer therapeutic approaches to enable sustained drug release and achieve prolonged drug performance near the tumor site or target tissue.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Resultado del Tratamiento
2.
Sci Rep ; 13(1): 2096, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747013

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an inexorably progressive and degenerative disorder of motor neurons with no currently-known cure. Studies to determine the mechanism of neurotoxicity and the impact of ALS-linked mutations (SOD1, FUS, TARDP, C9ORF72, PFN1, TUBA4A and others) have greatly expanded our knowledge of ALS disease mechanisms and have helped to identify potential targets for ALS therapy. Cellular pathologies (e.g., aggregation of mutant forms of SOD1, TDP43, FUS, Ubiqulin2, PFN1, and C9ORF72), mitochondrial dysfunction, neuroinflammation, and oxidative damage are major pathways implicated in ALS. Nevertheless, the selective vulnerability of motor neurons remains unexplained. The importance of tubulins for long-axon infrastructure, and the special morphology and function of motor neurons, underscore the central role of the cytoskeleton. The recent linkage of mutations to the tubulin α chain, TUBA4A, to familial and sporadic cases of ALS provides a new investigative opportunity to shed light on both mechanisms of ALS and the vulnerability of motor neurons. In the current study we investigate TUBA4A, a structural microtubule protein with mutations causal to familial ALS, using molecular-dynamic (MD) modeling of protein structure to predict the effects of each mutation and its overall impact on GTP binding, chain stability, tubulin assembly, and aggregation propensity. These studies predict that each of the reported mutations will cause notable structural changes to the TUBA4A (α chain) tertiary protein structure, adversely affecting its physical properties and functions. Molecular docking and MD simulations indicate certain α chain mutations (e.g. K430N, R215C, and W407X) may cause structural deviations that impair GTP binding, and plausibly prevent or destabilize tubulin polymerization. Furthermore, several mutations (including R320C and K430N) confer a significant increase in predicted aggregation propensity of TUBA4A mutants relative to wild-type. Taken together, these in silico modeling studies predict structural perturbations and disruption of GTP binding, culminating in failure to form a stable tubulin heterocomplex, which may furnish an important pathogenic mechanism to trigger motor neuron degeneration in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Tubulina (Proteína)/genética , Superóxido Dismutasa-1/genética , Simulación del Acoplamiento Molecular , Proteína C9orf72/genética , Mutación , Microtúbulos/metabolismo , Guanosina Trifosfato , Profilinas/genética
4.
Metab Brain Dis ; 37(1): 229-241, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34302583

RESUMEN

The hydrogen/deuterium exchange (HDX) is a reliable method to survey the dynamic behavior of proteins and epitope mapping. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) is a quantifying tool to assay for HDX in the protein of interest. We combined HDX-MALDI-TOF MS and molecular docking/MD simulation to identify accessible amino acids and analyze their contribution into the structural changes of profilin-1 (PFN-1). The molecular docking/MD simulations are computational tools for enabling the analysis of the type of amino acids that may be involved via HDX identified under the lowest binding energy condition. Glycine to valine amino acid (G117V) substitution mutation is linked to amyotrophic lateral sclerosis (ALS). This mutation is found to be in the actin-binding site of PFN-1 and prevents the dimerization/polymerization of actin and invokes a pathologic toxicity that leads to ALS. In this study, we sought to understand the PFN-1 protein dynamic behavior using purified wild type and mutant PFN-1 proteins. The data obtained from HDX-MALDI-TOF MS for PFN-1WT and PFN-1G117V at various time intervals, from seconds to hours, revealed multiple peaks corresponding to molecular weights from monomers to multimers. PFN-1/Benzaldehyde complexes identified 20 accessible amino acids to HDX that participate in the docking simulation in the surface of WT and mutant PFN-1. Consistent results from HDX-MALDI-TOF MS and docking simulation predict candidate amino acid(s) involved in the dimerization/polymerization of PFNG117V. This information may shed critical light on the structural and conformational changes with details of amino acid epitopes for mutant PFN-1s' dimerization, oligomerization, and aggregation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Medición de Intercambio de Deuterio , Profilinas , Esclerosis Amiotrófica Lateral/genética , Biología Computacional , Deuterio , Humanos , Simulación del Acoplamiento Molecular , Profilinas/química , Profilinas/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Metab Brain Dis ; 37(6): 1697-1702, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33905071

RESUMEN

Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, leads to the loss of motor neurons. There are currently no effective therapies to treat this disease as the molecular mechanisms of motor neuron degeneration are largely unknown. The diagnosis of ALS, or motor neuron disease, is not a simple process that can be carried out with one doctor visit or a single simple test. This has created a major problem for patients with ALS and their physicians since they are often not diagnosed until about a year into the disease. In order to combat this issue, new techniques of detecting the clinical and pathological changes of the disease are critical. These techniques are currently being studied and developed which can revolutionize the diagnosis of ALS. Once this technology is established, it may have application to monitor the progression of the disease. RNA-Seq is a powerful tool that has potential to identify RNA as small molecules in patients' biological samples (Plasma, Cerebral Spinal Fluid) which can be used to inform the system changes in patients with ALS. In this review, we will explore and discuss our current work on RNA-Seq and its development of biomarkers to diagnose and assess the rate of progression in the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Biomarcadores , Humanos , Neuronas Motoras/patología , ARN/genética
6.
Basic Clin Neurosci ; 12(2): 213-222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925718

RESUMEN

INTRODUCTION: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing mutant PFN1 may be a mechanism for motor neuron death. Hence, we were interested in investigating the aggregation of PFN1 further and searching for co-aggregated proteins in our mouse model overexpressing mutant PFN1. METHODS: We investigated protein aggregation in several tissues of transgenic and notransgenic mice using western blotting. To further understand the neurotoxicity of mutant PFN1, we conducted a pull-down assay using an insoluble fraction of spinal cord lysates from hPFN1G118V transgenic mice. For this assay, we expressed His6-tagged PFN1WT and PFN1G118V in E. coli and purified these proteins using the Ni-NTA column. RESULTS: In this study, we demonstrated that mutant PFN1 forms aggregate in the brain and spinal cord of hPFN1G118V mice, while WT-PFN1 remains soluble. Among these tissues, spinal cord lysates were found to have PFN1 bands at higher molecular weights recognized with anti-PFN1. Moreover, the pull-down assay using His6-PFN1G118V showed that Myelin Binding Protein (MBP) was present in the insoluble fraction. CONCLUSION: Our analysis of PFN1 aggregation in vivo revealed further details of mutant PFN1 aggregation and its possible complex formation with other proteins, providing new insights into the ALS mechanism.

7.
Sci Rep ; 11(1): 6849, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767237

RESUMEN

This study aimed to investigate four of the eight PFN-1 mutations that are located near the actin-binding domain and determine the structural changes due to each mutant and unravel how these mutations alter protein structural behavior. Swapaa's command in UCSF chimera for generating mutations, FTMAP were employed and the data was analyzed by RMSD, RMSF graphs, Rg, hydrogen bonding analysis, and RRdisMaps utilizing Autodock4 and GROMACS. The functional changes and virtual screening, structural dynamics, and chemical bonding behavior changes, molecular docking simulation with two current FDA-approved drugs for ALS were investigated. The highest reduction and increase in Rg were found to exist in the G117V and M113T mutants, respectively. The RMSF data consistently shows changes nearby to this site. The in silico data described indicate that each of the mutations is capable of altering the structure of PFN-1 in vivo. The potential effect of riluzole and edaravone two FDA approved drugs for ALS, impacting the structural deviations and stabilization of the mutant PFN-1 is evaluated using in silico tools. Overall, the analysis of data collected reveals structural changes of mutant PFN-1 protein that may explain the neurotoxicity and the reason(s) for possible loss and gain of function of PFN-1 in the neurotoxic model of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Simulación por Computador , Edaravona/metabolismo , Proteínas Mutantes/metabolismo , Mutación , Profilinas/metabolismo , Riluzol/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Edaravona/química , Humanos , Simulación del Acoplamiento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Profilinas/química , Profilinas/genética , Conformación Proteica , Riluzol/química
8.
Sci Rep ; 8(1): 13737, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30213953

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the loss of motor neurons. The molecular mechanisms of motor neuron degeneration are largely unknown and there are currently no effective therapies to treat this disease. In this work, we report whole transcriptome profiling of spinal cords of mutant transgenic hPFN1G118V mice and their wildtype transgenic hPFN1WT controls at a pre-symptomatic stage and at the end-stage of disease. Analyses revealed that end-stage hPFN1G118V mice had 890 differentially expressed genes (747 up-regulated, 143 down-regulated) when compared to pre-symptomatic hPFN1G118V mice, and they had 836 differentially expressed genes (742 up-regulated, 94 down-regulated) when compared to age-matched hPFN1WT controls. Pre-symptomatic hPFN1G118V mice were not significantly different from age-matched hPFN1WT controls. Ingenuity Pathway Analysis identified inflammatory pathways significantly activated in end-stage hPFN1G118V samples, suggesting an excess of glial activation at end-stage disease, possibly due to an increase in glial composition within the spinal cord during disease progression. In conclusion, our RNA-Seq data identified molecules and pathways involved in the mechanisms of neurodegeneration that could potentially serve as therapeutic targets for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Enfermedades Neurodegenerativas/genética , Profilinas/genética , Transcriptoma/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuroglía/metabolismo , Neuroglía/patología , Análisis de Secuencia de ARN , Médula Espinal/metabolismo , Médula Espinal/fisiopatología
9.
Metab Brain Dis ; 33(6): 1975-1984, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30203378

RESUMEN

Single amino acid mutations in profilin 1 (PFN1) have been found to cause amyotrophic lateral sclerosis (ALS). Recently, we developed a mouse model for ALS using a PFN1 mutation (glycine 118 to valine, G118V), and we are now interested in understanding how PFN1 becomes toxically lethal with only one amino acid substitution. Therefore, we studied mutation-related changes in the PFN1 protein and hypothesized that such changes significantly disturb its structure. Initially, we expressed and studied the purified PFN1WT and PFN1G118V proteins from bacterial culture. We found that the PFN1G118V protein has a different mean residue ellipticity, as measured by far-UV circular dichroism, accompanied by a spectral shift. The intrinsic fluorescence of PFN1G118V showed a small fluctuation in maximum fluorescence absorption and intensity. Moreover, we examined the time course of PFN1 aggregation using SDS-PAGE, western blotting, and MALDI-TOF/TOF and found that compared with PFN1WT, PFN1G118V had an increased tendency to form aggregates. Dynamic light scattering data confirmed this, showing a larger size distribution for PFN1G118V. Our data explain why PFN1G118V tends to aggregate, a phenotype that may be the basis for its neurotoxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Mutación/genética , Profilinas/química , Profilinas/genética , Agregado de Proteínas/genética , Humanos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
Sci Rep ; 8(1): 13102, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166578

RESUMEN

Profilin-1 (PFN1) is a 140-amino-acid protein with two distinct binding sites-one for actin and one for poly-L-proline (PLP). The best-described function of PFN1 is to catalyze actin elongation and polymerization. Thus far, eight DNA mutations in the PFN1 gene encoding the PFN1 protein are associated with human amyotrophic lateral sclerosis (ALS). We and others recently showed that two of these mutations (Gly118Val or G118V and Cys71Gly or C71G) cause ALS in rodents. In vitro studies suggested that Met114Thr and Thr109Met cause the protein to behave abnormally and cause neurotoxicity. The mechanism by which a single amino acid change in human PFN1 causes the degeneration of motor neurons is not known. In this study, we investigated the structural perturbations of PFN1 caused by each ALS-associated mutation. We used molecular dynamics simulations to assess how these mutations alter the secondary and tertiary structures of human PFN1. Herein, we present our in silico data and analysis on the effect of G118V and T109M mutations on PFN1 and its interactions with actin and PLP. The substitution of valine for glycine reduces the conformational flexibility of the loop region between the α-helix and ß-strand and enhances the hydrophobicity of the region. Our in silico analysis of T109M indicates that this mutation alters the shape of the PLP-binding site and reduces the flexibility of this site. Simulation studies of PFN1 in its wild type (WT) and mutant forms (both G118V and T109M mutants) revealed differential fluctuation patterns and the formation of salt bridges and hydrogen bonds between critical residues that may shed light on differences between WT and mutant PFN1. In particular, we hypothesize that the flexibility of the actin- and PLP-binding sites in WT PFN1 may allow the protein to adopt slightly different conformations in its free and bound forms. These findings provide new insights into how each of these mutations in PFN1 might increase its propensity for misfolding and aggregation, leading to its dysfunction.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Biología Computacional/métodos , Mutación/genética , Profilinas/química , Profilinas/genética , Agregado de Proteínas , Actinas/metabolismo , Sitios de Unión , Simulación por Computador , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Mutantes/química , Proteínas Mutantes/genética , Péptidos/metabolismo , Unión Proteica , Conformación Proteica
11.
Neurobiol Dis ; 114: 174-183, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518482

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal adult onset motor neuron disease characterized by progressive denervation and subsequent motor impairment. EphA4, a negative regulator of axonal growth, was recently identified as a genetic modifier in fish and rodent models of ALS. To evaluate the therapeutic potential of EphA4 for ALS, we examined the effect of CNS-directed EphA4 reduction in preclinical mouse models of ALS, and assessed if the levels of EPHA4 mRNA in blood correlate with disease onset and progression in human ALS patients. We developed antisense oligonucleotides (ASOs) to specifically reduce the expression of EphA4 in the central nervous system (CNS) of adult mice. Intracerebroventricular administration of an Epha4-ASO in wild-type mice inhibited Epha4 mRNA and protein in the brain and spinal cord, and promoted re-innervation and functional recovery after sciatic nerve crush. In contrast, lowering of EphA4 in the CNS of two mouse models of ALS (SOD1G93A and PFN1G118V) did not improve their motor function or survival. Furthermore, the level of EPHA4 mRNA in human blood correlated weakly with age of disease onset, and it was not a significant predictor of disease progression as measured by ALS Functional Rating Scores (ALSFRS). Our data demonstrates that lowering EphA4 in the adult CNS may not be a stand-alone viable strategy for treating ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Receptor EphA4/antagonistas & inhibidores , Receptor EphA4/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Distribución Aleatoria , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
12.
Hum Mol Genet ; 26(4): 686-701, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28040732

RESUMEN

The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeleton-regulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Mutación Missense , Profilinas/biosíntesis , Médula Espinal/metabolismo , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Profilinas/genética , Médula Espinal/patología
13.
Cell Mol Life Sci ; 74(6): 967-981, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27669692

RESUMEN

Profilins were discovered in the 1970s and were extensively studied for their significant physiological roles. Profilin1 is the most prominent isoform and has drawn special attention due to its role in the cytoskeleton, cell signaling, and its link to conditions such as cancer and vascular hypertrophy. Recently, multiple mutations in the profilin1 gene were linked to amyotrophic lateral sclerosis (ALS). In this review, we will discuss the physiological and pathological roles of profilin1. We will further highlight the cytoskeletal function and dysfunction caused by profilin1 dysregulation. Finally, we will discuss the implications of mutant profilin1 in various diseases with an emphasis on its contribution to the pathogenesis of ALS.


Asunto(s)
Actinas/metabolismo , Mutación/genética , Profilinas/genética , Animales , Encéfalo/embriología , Enfermedad/genética , Humanos , Plasticidad Neuronal , Profilinas/química , Profilinas/metabolismo
14.
Hum Mol Genet ; 25(2): 317-27, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26604138

RESUMEN

Neuroinflammation, immune reactivity and mitochondrial abnormalities are considered as causes and/or contributors to neuronal degeneration. Peroxisome proliferator-activated receptors (PPARs) regulate both inflammatory and multiple other pathways that are implicated in neurodegeneration. In the present study, we investigated the efficacy of fenofibrate (Tricor), a pan-PPAR agonist that activates PPAR-α as well as other PPARs. We administered fenofibrate to superoxide dismutase 1 (SOD1(G93A)) mice daily prior to any detectable phenotypes and then animal behavior, pathology and longevity were assessed. Treated animals showed a significant slowing of the progression of disease with weight loss attenuation, enhanced motor performance, delayed onset and survival extension. Histopathological analysis of the spinal cords showed that neuronal loss was significantly attenuated in fenofibrate-treated mice. Mitochondria were preserved as indicated by Cytochrome c immunostaining in the spinal cord, which maybe partly due to increased expression of the PPAR-γ co-activator 1-α. The total mRNA analysis revealed that neuroprotective and anti-inflammatory genes were elevated, while neuroinflammatory genes were down-regulated. This study demonstrates that the activation of PPAR-α action via fenofibrate leads to neuroprotection by both reducing neuroinflammation and protecting mitochondria, which leads to a significant increase in survival in SOD1(G93A) mice. Therefore, the development of therapeutic strategies to activate PPAR-α as well as other PPARs may lead to new therapeutic agents to slow or halt the progression of amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Fenofibrato/farmacología , Inflamación/metabolismo , Neuronas/fisiología , PPAR alfa/agonistas , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/patología , Animales , Muerte Celular , Progresión de la Enfermedad , Femenino , Fenofibrato/inmunología , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/inmunología , Fármacos Neuroprotectores/inmunología , Fármacos Neuroprotectores/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/fisiopatología
15.
Expert Opin Drug Discov ; 10(10): 1099-118, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26307158

RESUMEN

INTRODUCTION: Drug discovery for amyotrophic lateral sclerosis (ALS) has experienced a surge in clinical studies and remarkable preclinical milestones utilizing a variety of mutant superoxide dismutase 1 model systems. Of the drugs that were tested and showed positive preclinical effects, none demonstrated therapeutic benefits to ALS patients in clinical settings. AREAS COVERED: This review discusses the advances made in drug discovery for ALS and highlights why drug development is proving to be so difficult. It also discusses how a closer look at both preclinical and clinical studies could uncover the reasons why these preclinical successes have yet to result in the availability of an effective drug for clinical use. EXPERT OPINION: Valuable lessons from the numerous preclinical and clinical studies supply the biggest advantage in the monumental task of finding a cure for ALS. Obviously, a single design type for ALS clinical trials has not yielded success. The authors suggest a two-pronged approach that may prove essential to achieve clinical efficacy in the identification of novel targets and preclinical testing in multiple models to identify biomarkers that can function in diagnostic, predictive and prognostic roles, and changes to clinical trial design and patient recruitment criteria. The advancement of technology and invention of more powerful tools will further enhance the above. This will give rise to more sophisticated clinical trials with consideration of a range of criteria from: optimum dose, route of delivery, specific biomarkers, pharmacokinetics, pharmacodynamics and toxicology to biomarkers, timing for trial and patients' clinical status.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Biomarcadores , Sistemas de Liberación de Medicamentos , Humanos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
16.
Mol Cell Biochem ; 397(1-2): 17-31, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25060910

RESUMEN

Calycopterin is a flavonoid compound isolated from Dracocephalum kotschyi that has multiple medical uses, as an antispasmodic, analgesic, anti-hyperlipidemic, and immunomodulatory agents. However, its biological activity and the mechanism of action are poorly investigated. Herein, we investigated the apoptotic effect of calycopterin against the human hepatoblastoma cancer cell (HepG2) line. We discovered that calycopterin-treated HepG2 cells were killed off by apoptosis in a dose-dependent manner within 24 h, and was characterized by the appearance of nuclear shrinkage, cleavage of poly (ADP-ribose) polymerase and DNA fragmentation. Calycopterin treatment also affected HepG2 cell viability: (a) by inhibiting cell cycle progression at the G2/M transition leading to growth arrest and apoptosis; (b) by decreasing the expression of mitotic kinase cdc2, mitotic phosphatase cdc25c, mitotic cyclin B1, and apoptotic factors pro-caspases-3 and -9; and (c) increasing the levels of mitochondrial apoptotic-related proteins, intracellular levels of reactive oxygen species, and nitric oxide. We further examined the phosphorylation of extracellular signal-related kinase (ERK 1/2), c-Jun N-terminal kinase, and p-38 mitogen-activated protein kinases (MAPKs) and found they all were significantly increased in HepG2 cells treated with calycopterin. Interestingly, we discovered that treated cells had significantly lower Akt phosphorylation. This mode of action for calycopterin in our study provides strong support that inhibition of PI3K/Akt and activation of MAPKs are pivotal in G2/M cell cycle arrest and apoptosis of human hepatocarcinoma cells mediated by calycopterin.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Flavonas/farmacología , Hepatoblastoma/tratamiento farmacológico , Neoplasias Hepáticas/dietoterapia , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Hep G2 , Hepatoblastoma/enzimología , Hepatoblastoma/genética , Hepatoblastoma/patología , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Mitocondrias Hepáticas/patología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética
17.
Drug Dev Res ; 75(1): 10-22, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24648045

RESUMEN

There is a pressing need to develop safe and effective radioprotector/radiomitigator agents for use in accidental or terrorist-initiated radiological emergencies. Naturally occurring vitamin E family constituents, termed tocols, that include the tocotrienols, are known to have radiation-protection properties. These agents, which work through multiple mechanisms, are promising radioprotectant agents having minimal toxicity. Although α-tocopherol (AT) is the most commonly studied form of vitamin E, the tocotrienols are more potent than AT in providing radioprotection and radiomitigation. Unfortunately, despite their very significant radioprotectant activity, tocotrienols have very short plasma half-lives and require dosing at very high levels to achieve necessary therapeutic benefits. Thus, it would be highly desirable to develop new vitamin E analogues with improved pharmacokinetic properties, specifically increased elimination half-life and increased area under the plasma level versus time curve. The short elimination half-life of the tocotrienols is related to their low affinity for the α-tocopherol transfer protein (ATTP), the protein responsible for maintaining the plasma level of the tocols. Tocotrienols have less affinity for ATTP than does AT, and thus have a longer residence time in the liver, putting them at higher risk for metabolism and biliary excretion. We hypothesized that the low-binding affinity of tocotrienols to ATTP is due to the relatively more rigid tail structure of the tocotrienols in comparison with that of the tocopherols. Therefore, compounds with a more flexible tail would have better binding to ATTP and consequently would have longer elimination half-life and, consequently, an increased exposure to drug, as measured by area under the plasma drug level versus time curve (AUC). This represents an enhanced residence of drug in the systemic circulation. Based on this hypothesis, we developed a new class of vitamin E analogues, the tocoflexols, which maintain the superior bioactivity of the tocotrienols with the potential to achieve the longer half-life and larger AUC of the tocopherols.


Asunto(s)
Proteínas Portadoras/metabolismo , Hígado/metabolismo , Protectores contra Radiación/farmacocinética , Tocotrienoles/farmacocinética , Vitamina E/análogos & derivados , Vitamina E/farmacocinética , Animales , Sitios de Unión , Disponibilidad Biológica , Diseño de Fármacos , Semivida , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Ratas , Ratas Wistar
18.
J Biomol Struct Dyn ; 32(8): 1211-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23829337

RESUMEN

Ca(2+) is an essential second messenger, playing a fundamental role in maintaining cell viability and neuronal activity. Two specific endoplasmic reticulum calcium channels, ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) play an important role in Ca(2+) regulation. In the present study, we provided a 3D structure of RyR and IP3R by homology modeling, and we predicted their interactions with a known neuroprotective compound, 3-thiomethyl-5,6-(dimethoxyphenyl)-1,2,4-triazine (TDMT), as well as two inhibitors, dantrolene and 2-aminoethoxydiphenyl borate (2-APB). Interestingly, we found that dantrolene and 2-APB can bind to the IP3-binding domain of IP3R and RyR, while TDMT may directly block both channels by interacting with the putative resident domains in the pore. Cell culture experiments showed that these compounds could protect PC12 cells against H2O2-induced apoptosis and activate autophagic pathways. Collectively, our computational (in silico) and cell culture studies suggest that RyR and IP3R are novel and promising targets to be used against neurodegenerative diseases.


Asunto(s)
Compuestos de Boro/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Dantroleno/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Triazinas/farmacología , Secuencia de Aminoácidos , Animales , Apoptosis , Autofagia , Compuestos de Boro/química , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/química , Dantroleno/química , Peróxido de Hidrógeno/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/química , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Células PC12 , Ratas , Canal Liberador de Calcio Receptor de Rianodina/química , Homología de Secuencia de Aminoácido , Transducción de Señal , Triazinas/química
19.
Cell Mol Life Sci ; 70(24): 4681-94, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23800989

RESUMEN

The endoplasmic reticulum (ER) lumen is chemically complex and crowded with polypeptides in different stages of assembly. ER quality control monitors chaperone-assisted protein folding, stochastic errors and off-pathway intermediates. In acute conditions, potentially toxic polypeptides overflow the capacity of the chaperone system and lead to ER stress. Activation of the unfolded protein response (UPR) following ER stress buys time for non-native polypeptides to refold or be eliminated; otherwise cell death occurs. The clearance routes for deleterious proteins are endoplasmic reticulum-associated degradation (ERAD) and ER stress-activated autophagy. The ERAD pathway is a chaperone and proteasome-mediated polypeptide degradation, while autophagy applies to wider range of substances. ER stress signal transduction recruits diverse molecules and pathways upon UPR induction to compensate stress condition. NF-E2-related factor 1 (Nrf1) and Nrf2 are two transcription factors mostly known by their induction through an antioxidant response; they can also be activated by UPR machinery. Discovery of diverse molecules downstream of Nrf1 and Nrf2 has expanded our understanding of the biological impacts of these transcription factors beyond classic antioxidant activation. In this review, we summarize our current understanding of mutual relationships between Nrf1, Nrf2, and ER stress clearance mechanisms and highlight the crosstalk of specific molecules mediating these correlations.


Asunto(s)
Estrés del Retículo Endoplásmico , Factor 1 Relacionado con NF-E2/fisiología , Factor 2 Relacionado con NF-E2/fisiología , Animales , Autofagia , Degradación Asociada con el Retículo Endoplásmico , Humanos , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Respuesta de Proteína Desplegada
20.
Proc Natl Acad Sci U S A ; 110(12): E1102-11, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487751

RESUMEN

Oxidative stress is a widely recognized cause of cell death associated with neurodegeneration, inflammation, and aging. Tyrosine nitration in these conditions has been reported extensively, but whether tyrosine nitration is a marker or plays a role in the cell-death processes was unknown. Here, we show that nitration of a single tyrosine residue on a small proportion of 90-kDa heat-shock protein (Hsp90), is sufficient to induce motor neuron death by the P2X7 receptor-dependent activation of the Fas pathway. Nitrotyrosine at position 33 or 56 stimulates a toxic gain of function that turns Hsp90 into a toxic protein. Using an antibody that recognizes the nitrated Hsp90, we found immunoreactivity in motor neurons of patients with amyotrophic lateral sclerosis, in an animal model of amyotrophic lateral sclerosis, and after experimental spinal cord injury. Our findings reveal that cell death can be triggered by nitration of a single protein and highlight nitrated Hsp90 as a potential target for the development of effective therapies for a large number of pathologies.


Asunto(s)
Muerte Celular/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Ácido Peroxinitroso/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Ratas , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Tirosina/metabolismo , Receptor fas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...