Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
HLA ; 103(4): e15482, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38625090

RESUMEN

Polymorphism of killer-cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands impacts the effector activity of cytotoxic NK cell and T cell subsets. Therefore, understanding the extent and implications of KIR and HLA class I genetic polymorphism across various populations is important for immunological and medical research. In this study, we conducted a high-resolution investigation of KIR and HLA class I diversity in three distinct Chinese ethnic minority populations. We studied the She, Yugur, and Tajik, and compared them with the Zhejiang Han population (Zhe), which represents the majority Southern Han ethnicity. Our findings revealed that the Tajik population exhibited the most diverse KIR copy number, allele, and haplotype diversity among the four populations. This diversity aligns with their proposed ancestral origin, closely resembling that of Iranian populations, with a relatively higher presence of KIR-B genes, alleles, and haplotypes compared with the other Chinese populations. The Yugur population displayed KIR distributions similar to those of the Tibetans and Southeast Asians, whereas the She population resembled the Zhe and other East Asians, as confirmed by genetic distance analysis of KIR. Additionally, we identified 12.9% of individuals across the three minority populations as having KIR haplotypes characterized by specific gene block insertions or deletions. Genetic analysis based on HLA alleles yielded consistent results, even though there were extensive variations in HLA alleles. The observed variations in KIR interactions, such as higher numbers of 2DL1-C2 interactions in Tajik and Yugur populations and of 2DL3-C1 interactions in the She population, are likely shaped by demographic and evolutionary mechanisms specific to their local environments. Overall, our findings offer valuable insights into the distribution of KIR and HLA diversity among three distinct Chinese ethnic minority populations, which can inform future clinical and population studies.


Asunto(s)
Pueblos del Este de Asia , Minorías Étnicas y Raciales , Grupos Minoritarios , Receptores KIR , Humanos , Alelos , China , Pueblos del Este de Asia/genética , Etnicidad/genética , Genotipo , Receptores KIR/genética
2.
Transplant Cell Ther ; 30(5): 488.e1-488.e15, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369017

RESUMEN

The majority of established KIR clinical assessment algorithms used for donor selection for hematopoietic progenitor cell transplantation (HPCT) evaluate gene content (presence/absence) of the KIR gene complex. In comparison, relatively little is known about the impact of KIR allelic polymorphism. By analyzing donors of T cell depleted (TcD) reduced intensity conditioning (RIC) HPCT, this study investigated the influence on post-transplant outcome of 2 polymorphic residues of the inhibitory KIR2DL1. The aim of this study was to expand upon existing research into the influence of KIR2DL1 allelic polymorphism upon post-transplant outcome. The effects of allele groups upon transplant outcomes were investigated within a patient cohort using a defined treatment protocol of RIC with TcD. Using phylogenetic data, KIR2DL1 allelic polymorphism was categorized into groups on the basis of variation within codons 114 and 245 (positive or negative for the following groups: KIR2DL1*002/001g, KIR2DL1*003, KIR2DL1*004g) and the identification of null alleles. The influence of these KIR2DL1 allele groups in hematopoietic progenitor cell transplantation (HPCT) donors was assessed in the post-transplant data of 86 acute myelogenous leukemia patients receiving RIC TcD HPCT at a single center. KIR2DL1 allele groups in the donor significantly impacted upon 5-year post-transplant outcomes in RIC TcD HPCT. Donor KIR2DL1*003 presented the greatest influence upon post-transplant outcomes, with KIR2DL1*003 positive donors severely reducing 5-year post-transplant overall survival (OS) compared to those receiving a transplant from a KIR2DL1*003 negative donor (KIR2DL1*003 pos versus neg: 27.0% versus 60.0%, P = .008, pc = 0.024) and disease-free survival (DFS) (KIR2DL1*003 pos versus neg: 23.5% versus 60.0%, P = .004, pc = 0.012), and increasing 5-year relapse incidence (KIR2DL1*003 pos versus neg: 63.9% versus 27.2%, P = .009, pc = 0.027). KIR2DL1*003 homozygous and KIR2DL1*003 heterozygous grafts did not present significantly different post-transplant outcomes. Donors possessing the KIR2DL1*002/001 allele group were found to significantly improve post-transplant outcomes, with donors positive for the KIR2DL1*004 allele group presenting a trend towards improvement. KIR2DL1*002/001 allele group (KIR2DL1*002/001g) positive donors improved 5-year OS (KIR2DL1*002/001g pos versus neg: 56.4% versus 27.2%, P = .009, pc = 0.024) and DFS (KIR2DL1*002/001g pos versus neg: 53.8% versus 25.5%, P = .018, pc = 0.036). KIR2DL1*004 allele group (KIR2DL1*004g) positive donors trended towards improving 5-year OS (KIR2DL1*004g pos versus neg: 53.3% versus 35.5%, P = .097, pc = 0.097) and DFS (KIR2DL1*004g pos versus neg: 50.0% versus 33.9%, P = .121, pc = 0.121), and reducing relapse incidence (KIR2DL1*004g pos versus neg: 33.1% versus 54.0%, P = .079, pc = 0.152). The presented findings suggest donor selection algorithms for TcD RIC HPCT should consider avoiding KIR2DL1*003 positive donors, where possible, and contributes to the mounting evidence that KIR assessment in donor selection algorithms should reflect the conditioning regime protocol used.


Asunto(s)
Alelos , Trasplante de Células Madre Hematopoyéticas , Polimorfismo Genético , Receptores KIR2DL1 , Acondicionamiento Pretrasplante , Adulto , Femenino , Humanos , Masculino , Trasplante de Células Madre Hematopoyéticas/métodos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Depleción Linfocítica , Receptores KIR2DL1/genética , Linfocitos T/inmunología , Donantes de Tejidos , Resultado del Tratamiento
3.
HLA ; 103(1): e15177, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37528739

RESUMEN

Genetically determined variation of killer cell immunoglobulin like receptors (KIR) and their HLA class I ligands affects multiple aspects of human health. Their extreme diversity is generated through complex interplay of natural selection for pathogen resistance and reproductive health, combined with demographic structure and dispersal. Despite significant importance to multiple health conditions of differential effect across populations, the nature and extent of immunogenetic diversity is under-studied for many geographic regions. Here, we describe the first high-resolution analysis of KIR and HLA class I combinatorial diversity in Northern Africa. Analysis of 125 healthy unrelated individuals from Cairo in Egypt yielded 186 KIR alleles arranged in 146 distinct centromeric and 79 distinct telomeric haplotypes. The most frequent haplotypes observed were KIR-A, encoding two inhibitory receptors specific for HLA-C, two that are specific for HLA-A and -B, and no activating receptors. Together with 141 alleles of HLA class I, 75 of which encode a KIR ligand, we identified a mean of six distinct interacting pairs of inhibitory KIR and HLA allotypes per individual. We additionally characterize 16 KIR alleles newly identified in the study population. Our findings place Egyptians as one of the most highly diverse populations worldwide, with important implications for transplant matching and studies of immune-mediated diseases.


Asunto(s)
Multimorbilidad , Pueblo Norteafricano , Receptores KIR , Humanos , Egipto , Estudios Transversales , Alelos , Receptores KIR/genética , Haplotipos
4.
HLA ; 103(1): e15251, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37850268

RESUMEN

Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.


Asunto(s)
COVID-19 , Cadenas beta de HLA-DP , Humanos , COVID-19/genética , SARS-CoV-2/genética , Alelos , Receptores KIR/genética , Genotipo , Autoanticuerpos/genética
5.
Blood Adv ; 7(16): 4492-4504, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37327114

RESUMEN

The functionality of natural killer (NK) cells is tuned during education and is associated with remodeling of the lysosomal compartment. We hypothesized that genetic variation in killer cell immunoglobulin-like receptor (KIR) and HLA, which is known to influence the functional strength of NK cells, fine-tunes the payload of effector molecules stored in secretory lysosomes. To address this possibility, we performed a high-resolution analysis of KIR and HLA class I genes in 365 blood donors and linked genotypes to granzyme B loading and functional phenotypes. We found that granzyme B levels varied across individuals but were stable over time in each individual and genetically determined by allelic variation in HLA class I genes. A broad mapping of surface receptors and lysosomal effector molecules revealed that DNAM-1 and granzyme B levels served as robust metric of the functional state in NK cells. Variation in granzyme B levels at rest was tightly linked to the lytic hit and downstream killing of major histocompatibility complex-deficient target cells. Together, these data provide insights into how variation in genetically hardwired receptor pairs tunes the releasable granzyme B pool in NK cells, resulting in predictable hierarchies in global NK cell function.


Asunto(s)
Células Asesinas Naturales , Receptores KIR , Granzimas/genética , Granzimas/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Genotipo
6.
HLA ; 102(1): 28-43, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36932816

RESUMEN

Accurate and comprehensive immunogenetic reference panels are key to the successful implementation of population-scale immunogenomics. The 5Mbp Major Histocompatibility Complex (MHC) is the most polymorphic region of the human genome and associated with multiple immune-mediated diseases, transplant matching and therapy responses. Analysis of MHC genetic variation is severely complicated by complex patterns of sequence variation, linkage disequilibrium and a lack of fully resolved MHC reference haplotypes, increasing the risk of spurious findings on analyzing this medically important region. Integrating Illumina, ultra-long Nanopore, and PacBio HiFi sequencing as well as bespoke bioinformatics, we completed five of the alternative MHC reference haplotypes of the current (GRCh38/hg38) build of the human reference genome and added one other. The six assembled MHC haplotypes encompass the DR1 and DR4 haplotype structures in addition to the previously completed DR2 and DR3, as well as six distinct classes of the structurally variable C4 region. Analysis of the assembled haplotypes showed that MHC class II sequence structures, including repeat element positions, are generally conserved within the DR haplotype supergroups, and that sequence diversity peaks in three regions around HLA-A, HLA-B+C, and the HLA class II genes. Demonstrating the potential for improved short-read analysis, the number of proper read pairs recruited to the MHC was found to be increased by 0.06%-0.49% in a 1000 Genomes Project read remapping experiment with seven diverse samples. Furthermore, the assembled haplotypes can serve as references for the community and provide the basis of a structurally accurate genotyping graph of the complete MHC region.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Complejo Mayor de Histocompatibilidad , Humanos , Haplotipos , Alelos , Antígenos de Histocompatibilidad Clase II/genética , Complejo Mayor de Histocompatibilidad/genética , Antígenos HLA/genética , Antígenos HLA-C/genética
7.
PLoS Comput Biol ; 18(2): e1009059, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192601

RESUMEN

Highly polymorphic interaction of KIR3DL1 and KIR3DS1 with HLA class I ligands modulates the effector functions of natural killer (NK) cells and some T cells. This genetically determined diversity affects severity of infections, immune-mediated diseases, and some cancers, and impacts the course of immunotherapies, including transplantation. KIR3DL1 is an inhibitory receptor, and KIR3DS1 is an activating receptor encoded by the KIR3DL1/S1 gene that has more than 200 diverse and divergent alleles. Determination of KIR3DL1/S1 genotypes for medical application is hampered by complex sequence and structural variation, requiring targeted approaches to generate and analyze high-resolution allele data. To overcome these obstacles, we developed and optimized a model for imputing KIR3DL1/S1 alleles at high-resolution from whole-genome SNP data. We designed the model to represent a substantial component of human genetic diversity. Our Global imputation model is effective at genotyping KIR3DL1/S1 alleles with an accuracy ranging from 88% in Africans to 97% in East Asians, with mean specificity of 99% and sensitivity of 95% for alleles >1% frequency. We used the established algorithm of the HIBAG program, in a modification named Pulling Out Natural killer cell Genomics (PONG). Because HIBAG was designed to impute HLA alleles also from whole-genome SNP data, PONG allows combinatorial diversity of KIR3DL1/S1 with HLA-A and -B to be analyzed using complementary techniques on a single data source. The use of PONG thus negates the need for targeted sequencing data in very large-scale association studies where such methods might not be tractable.


Asunto(s)
Receptores KIR3DL1 , Receptores KIR3DS1 , Alelos , Genotipo , Antígenos HLA-B/genética , Humanos , Receptores KIR/genética , Receptores KIR3DL1/genética , Receptores KIR3DS1/genética
8.
Front Immunol ; 12: 640334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995358

RESUMEN

Killer cell immunoglobulin-like receptors (KIR) interact with human leukocyte antigen (HLA) class I molecules, modulating critical NK cell functions in the maintenance of human health. Characterizing the distribution and characteristics of KIR and HLA allotype diversity across defined human populations is thus essential for understanding the multiple associations with disease, and for directing therapies. In this study of 176 Zhejiang Han individuals from Southeastern China, we describe diversity of the highly polymorphic KIR and HLA class I genes at high resolution. KIR-A haplotypes, which carry four inhibitory receptors specific for HLA-A, B or C, are known to associate with protection from infection and some cancers. We show the Chinese Southern Han from Zhejiang are characterized by a high frequency of KIR-A haplotypes and a high frequency of C1 KIR ligands. Accordingly, interactions of inhibitory KIR2DL3 with C1+HLA are more frequent in Zhejiang Han than populations outside East Asia. Zhejiang Han exhibit greater diversity of inhibitory than activating KIR, with three-domain inhibitory KIR exhibiting the greatest degree of polymorphism. As distinguished by gene copy number and allele content, 54 centromeric and 37 telomeric haplotypes were observed. We observed 6% of the population to have KIR haplotypes containing large-scale duplications or deletions that include complete genes. A unique truncated haplotype containing only KIR2DL4 in the telomeric region was also identified. An additional feature is the high frequency of HLA-B*46:01, which may have arisen due to selection pressure from infectious disease. This study will provide further insight into the role of KIR and HLA polymorphism in disease susceptibility of Zhejiang Chinese.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/genética , Receptores KIR/genética , Pueblo Asiatico/genética , Haplotipos , Humanos , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología
9.
Immunology ; 162(4): 389-404, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33283280

RESUMEN

Killer cell immunoglobulin-like receptors (KIRs) interact with polymorphic human leucocyte antigen (HLA) class I molecules, modulating natural killer (NK) cell functions and affecting both the susceptibility and outcome of immune-mediated diseases. The KIR locus is highly diverse in gene content, copy number and allelic polymorphism within individuals and across geographical populations. To analyse currently under-represented Asian and Pacific populations, we investigated the combinatorial diversity of KIR and HLA class I in 92 unrelated Malay and 75 Malaysian Chinese individuals from the Malay Peninsula. We identified substantial allelic and structural diversity of the KIR locus in both populations and characterized novel variations at each analysis level. The Malay population is more diverse than Malay Chinese, likely representing a unique history including admixture with immigrating populations spanning several thousand years. Characterizing the Malay population are KIR haplotypes with large structural variants present in 10% individuals, and KIR and HLA alleles previously identified in Austronesian populations. Despite the differences in ancestries, the proportion of HLA allotypes that serve as KIR ligands is similar in each population. The exception is a significantly reduced frequency of interactions of KIR2DL1 with C2+ HLA-C in the Malaysian Chinese group, caused by the low frequency of C2+ HLA. One likely implication is a greater protection from preeclampsia, a pregnancy disorder associated with KIR2DL1, which shows higher incidence in the Malay than in the Malaysian Chinese. This first complete, high-resolution, characterization of combinatorial diversity of KIR and HLA in Malaysians will form a valuable reference for future clinical and population studies.


Asunto(s)
Pueblo Asiatico , Genotipo , Antígenos HLA-C/genética , Nativos de Hawái y Otras Islas del Pacífico , Preeclampsia/genética , Receptores KIR2DL1/genética , Alelos , Variaciones en el Número de Copia de ADN , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Incidencia , Malasia/epidemiología , Malasia/etnología , Masculino , Preeclampsia/epidemiología , Embarazo
10.
Front Immunol ; 10: 24, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30745901

RESUMEN

Natural killer (NK) cell functions are modulated by polymorphic killer cell immunoglobulin-like receptors (KIR). Among 13 human KIR genes, which vary by presence and copy number, KIR3DL3 is ubiquitously present in every individual across diverse populations. No ligand or function is known for KIR3DL3, but limited knowledge of expression suggests involvement in reproduction, likely during placentation. With 157 human alleles, KIR3DL3 is also highly polymorphic and we show heterozygosity exceeds that of HLA-B in many populations. The external domains of catarrhine primate KIR3DL3 evolved as a conserved lineage distinct from other KIR. Accordingly, and in contrast to other KIR, we show the focus of natural selection does not correspond exclusively to known ligand binding sites. Instead, a strong signal for diversifying selection occurs in the D1 Ig domain at a site involved in receptor aggregation, which we show is polymorphic in humans worldwide, suggesting differential ability for receptor aggregation. Meanwhile in the cytoplasmic tail, the first of two inhibitory tyrosine motifs (ITIM) is conserved, whereas independent genomic events have mutated the second ITIM of KIR3DL3 alleles in all great apes. Together, these findings suggest that KIR3DL3 binds a conserved ligand, and a function requiring both receptor aggregation and inhibitory signal attenuation. In this model KIR3DL3 resembles other NK cell inhibitory receptors having only one ITIM, which interact with bivalent downstream signaling proteins through dimerization. Due to the extensive conservation across species, selection, and other unusual properties, we consider elucidating the ligand and function of KIR3DL3 to be a pressing question.


Asunto(s)
Heterocigoto , Primates/genética , Primates/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Evolución Biológica , Hominidae , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Modelos Moleculares , Filogeografía , Primates/inmunología , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores KIR/química , Selección Genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA