Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6410, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302781

RESUMEN

Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs). When compounded by marine heatwaves, HEXs have larger ecological and societal impact. Here we combine observations with model simulations, to investigate the HEXs and Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in recent decades. We find that anthropogenic sea level rise combined with decadal climate variability causes increased occurrence of HEXs during 2010-2017. Both HEXs and CHHEXs are driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs, which occur during December-March, downwelling favorable northwest monsoon winds are enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña weaken the southeasterlies and cooling from coastal upwelling during May-June and November-December. Our findings emphasize the important interplay between anthropogenic warming and climate variability in affecting regional extremes.


Asunto(s)
El Niño Oscilación del Sur , Viento , Estaciones del Año , Indonesia , Océano Índico
2.
Sci Rep ; 11(1): 22546, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824293

RESUMEN

The Indian Ocean Dipole (IOD) is an interannual climate mode of the tropical Indian Ocean. Although it is known that negative sea surface temperature (SST) anomalies in the eastern pole during the positive IOD are stronger than positive SST anomalies during the negative IOD, no consensus has been reached on the relative importance of various mechanisms that contribute to this asymmetry. Based on a closed mixed layer heat budget analysis using a regional ocean model, here we show for the first time that the vertical mixing plays an important role in causing such asymmetry in SST anomalies in addition to the contributions from the nonlinear advection and the thermocline feedback proposed by previous studies. A decomposition of the vertical mixing term indicates that nonlinearity in the anomalous vertical temperature gradient associated with subsurface temperature anomalies and anomalous vertical mixing coefficients is the main driver of such asymmetry. Such variations in subsurface temperature are induced by the anomalous southeasterly trade winds along the Indonesian coast that modulate the thermocline depth through coastal upwelling/downwelling. Thus, the thermocline feedback contributes to the SST asymmetry not through the vertical advection as previously suggested, but via the vertical mixing.

3.
Science ; 374(6565): 341-346, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34648322

RESUMEN

Observations show that sea surface temperatures along the Gulf Stream and the Kuroshio Current tend to synchronize at decadal time scales. This synchronization, which we refer to as the boundary current synchronization (BCS), is reproduced in global climate models with high spatial resolution. Both in observations and model simulations, BCS is associated with meridional migrations of the atmospheric jet stream. Changes in the strength and path of the ocean currents associated with the jet shifts lead to the synchronicity of surface temperatures. Numerical simulations using a conceptual model and an atmospheric general circulation model are consistent with a notion that BCS is an interbasin air-sea coupled mode. Air temperature patterns similar to the one associated with BCS have been repeatedly observed, including in July of 1994 and 2018.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...