Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Evolution ; 76(2): 310-319, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34874067

RESUMEN

The presence of small RNAs in sperm is a relatively recent discovery and little is currently known about their importance and functions. Environmental changes including social conditions and dietary manipulations are known to affect the composition and expression of some small RNAs in sperm and may elicit a physiological stress response resulting in an associated change in gamete miRNA profiles. Here, we tested how microRNA profiles in sperm are affected by variation in both sexual selection and dietary regimes in Drosophila melanogaster selection lines. The selection lines were exposed to standard versus low yeast diet treatments and three different population sex ratios (male-biased, female-biased, or equal sex) in a full-factorial design. After 38 generations of selection, all males were maintained on their selected diet and in a common garden male-only environment prior to sperm sampling. We performed transcriptome analyses on miRNAs in purified sperm samples. We found 11 differentially expressed miRNAs with the majority showing differences between male- and female-biased lines. Dietary treatment only had a significant effect on miRNA expression levels in interaction with sex ratio. Our findings suggest that long-term adaptation may affect miRNA profiles in sperm and that these may show varied interactions with short-term environmental changes.


Asunto(s)
Drosophila , MicroARNs , Animales , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Selección Sexual , Espermatozoides/fisiología
2.
PeerJ ; 8: e10036, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33150060

RESUMEN

BACKGROUND: Morphological differentiation between populations resulting from local adaptations to environmental conditions is likely to be more pronounced in populations with increasing genetic isolation. In a previous study a positive clinal variation in body size was observed in isolated Roesel's bush-cricket, Metrioptera roeselii, populations, but were absent from populations within a continuous distribution at the same latitudinal range. This observational study inferred that there was a phenotypic effect of gene flow on climate-induced selection in this species. METHODS: To disentangle genetic versus environmental drivers of population differences in morphology, we measured the size of four different body traits in wild-caught individuals from the two most distinct latitudinally-matched pairs of populations occurring at about 60°N latitude in northern Europe, characterised by either restricted or continuous gene flow, and corresponding individuals raised under laboratory conditions. RESULTS: Individuals that originated from the genetically isolated populations were always bigger (femur, pronotum and genital appendages) when compared to individuals from latitudinally-matched areas characterised by continuous gene flow between populations. The magnitude of this effect was similar for wild-caught and laboratory-reared individuals. We found that previously observed size cline variation in both male and female crickets was likely to be the result of local genetic adaptation rather than phenotypic plasticity. CONCLUSIONS: This strongly suggests that restricted gene flow is of major importance for frequencies of alleles that participate in climate-induced selection acting to favour larger phenotypes in isolated populations towards colder latitudes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...