Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 17206, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821510

RESUMEN

Obesity is a state of metabolic dysfunction that can lead to dyslipidemia and impaired glucose homeostasis. Apple polyphenols have been shown to ameliorate dyslipidemia/metabolic dysfunction in humans. The influence of apple (poly)phenols on energy metabolism in high-fat (HF) diet-induced obese mice remains controversial. This study examined the effect of dietary supplementation of (poly)phenol-rich 'Daux Belan' apple (DB; 6.2 mg gallic acid equivalence (GAE)/mouse/day; 0.15% (poly)phenol) in the form of freeze-dried powder on glucose and lipid metabolism in male HF-fed C57BL/6NCrl mice, in comparison to low-(poly)phenol-containing 'Zestar' apple (Z; 0.4 mg GAE/mouse/day). Obesity, glucose intolerance, hypertriglyceridemia, and hepatic lipid vacuolation were induced by HF feeding while circulating cholesterol levels remained unchanged. DB apple supplementation did not protect against HF-induced body weight gain, hyperglycemia, hepatic triglyceride level elevation, and hepatic lipid vacuolation at the tested dosage. Future studies should be conducted with increased DB dosage and employ apple (poly)phenols supplemented in the form of extracts or sugar-free powder.


Asunto(s)
Dislipidemias , Intolerancia a la Glucosa , Humanos , Masculino , Ratones , Animales , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/prevención & control , Intolerancia a la Glucosa/metabolismo , Fenol/metabolismo , Ratones Endogámicos C57BL , Polvos/farmacología , Obesidad/metabolismo , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Suplementos Dietéticos , Fenoles/farmacología , Fenoles/metabolismo , Dislipidemias/etiología , Dislipidemias/prevención & control , Dislipidemias/metabolismo , Lípidos/farmacología
2.
J Biol Chem ; 298(12): 102692, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36372230

RESUMEN

Triple-negative breast cancer (TNBC) poses significant challenges for treatment given the lack of targeted therapies and increased probability of relapse. It is pertinent to identify vulnerabilities in TNBC and develop newer treatments. Our prior research demonstrated that transcription factor EB (TFEB) is necessary for TNBC survival by regulating DNA repair, apoptosis signaling, and the cell cycle. However, specific mechanisms by which TFEB targets DNA repair and cell cycle pathways are unclear, and whether these effects dictate TNBC survival is yet to be determined. Here, we show that TFEB knockdown decreased the expression of genes and proteins involved in DNA replication and cell cycle progression in MDA-MB-231 TNBC cells. DNA replication was decreased in cells lacking TFEB, as measured by EdU incorporation. TFEB silencing in MDA-MB-231 and noncancerous MCF10A cells impaired progression through the S-phase following G1/S synchronization; however, this proliferation defect could not be rescued by co-knockdown of suppressor RB1. Instead, TFEB knockdown reduced origin licensing in G1 and early S-phase MDA-MB-231 cells. TFEB silencing was associated with replication stress in MCF10A but not in TNBC cells. Lastly, we identified that TFEB knockdown renders TNBC cells more sensitive to inhibitors of Aurora Kinase A, a protein facilitating mitosis. Thus, inhibition of TFEB impairs cell cycle progress by decreasing origin licensing, leading to delayed entry into the S-phase, while rendering TNBC cells sensitive to Aurora kinase A inhibitors and decreasing cell viability. In contrast, TFEB silencing in noncancerous cells is associated with replication stress and leads to G1/S arrest.


Asunto(s)
Aurora Quinasa A , Ciclo Celular , Células Epiteliales , Factores de Transcripción , Neoplasias de la Mama Triple Negativas , Humanos , Apoptosis/genética , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Replicación del ADN/genética , Células Epiteliales/metabolismo , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Técnicas de Silenciamiento del Gen , Transducción de Señal/genética , Ciclo Celular/genética
3.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34502491

RESUMEN

Besides serving as a structural membrane component and intermediate of the glycerolipid metabolism, lysophosphatidic acid (LPA) has a prominent role as a signaling molecule through its binding to LPA receptors at the cell surface. Extracellular LPA is primarily produced from lysophosphatidylcholine (LPC) through the activity of secreted lysophospholipase D, autotaxin (ATX). The degradation of extracellular LPA to monoacylglycerol is mediated by lipid phosphate phosphatases (LPPs) at the cell membrane. This review summarizes and interprets current literature on the role of the ATX-LPA-LPP3 axis in the regulation of energy homeostasis, insulin function, and adiposity at baseline and under conditions of obesity. We also discuss how the ATX-LPA-LPP3 axis influences obesity-related metabolic complications, including insulin resistance, fatty liver disease, and cardiomyopathy.


Asunto(s)
Metabolismo Energético , Lisofosfolípidos/metabolismo , Enfermedades Metabólicas/metabolismo , Fosfatidato Fosfatasa/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Animales , Humanos
4.
Cell Death Discov ; 7(1): 241, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526485

RESUMEN

Triple-negative breast cancers (TNBCs) are characterized by poor survival, prognosis, and gradual resistance to cytotoxic chemotherapeutics, like doxorubicin (DOX). The clinical utility of DOX is limited by its cardiotoxic and chemoresistant effects that manifest over time. To induce chemoresistance, TNBC rewires oncogenic gene expression and cell signaling pathways. Recent studies have demonstrated that reprogramming of branched-chain amino acids (BCAAs) metabolism facilitates tumor growth and survival. Branched-chain ketoacid dehydrogenase kinase (BCKDK), a regulatory kinase of the rate-limiting enzyme of the BCAA catabolic pathway, is reported to activate RAS/RAF/MEK/ERK signaling to promote tumor cell proliferation. However, it remains unexplored if BCKDK action remodels TNBC proliferation and survival per se and influences susceptibility to DOX-induced genotoxic stress. TNBC cells treated with DOX exhibited reduced BCKDK expression and intracellular BCKAs. Genetic and pharmacological inhibition of BCKDK in TNBC cell lines also showed a similar reduction in intracellular and secreted BCKAs. BCKDK silencing in TNBC cells downregulated mitochondrial metabolism genes, reduced electron complex protein expression, oxygen consumption, and ATP production. Transcriptome analysis of BCKDK silenced cells confirmed dysregulation of mitochondrial metabolic networks and upregulation of the apoptotic signaling pathway. Furthermore, BCKDK inhibition with concurrent DOX treatment exacerbated apoptosis, caspase activity, and loss of TNBC proliferation. Inhibition of BCKDK in TNBC also upregulated sestrin 2 and concurrently decreased mTORC1 signaling and protein synthesis. Overall, loss of BCKDK action in TNBC remodels BCAA flux, reduces protein translation triggering cell death, ATP insufficiency, and susceptibility to genotoxic stress.

5.
Nanomedicine (Lond) ; 16(24): 2175-2188, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34547916

RESUMEN

Aim: Monitoring minimal residual disease remains a challenge to the effective medical management of hematological malignancies; yet surface-enhanced Raman spectroscopy (SERS) has emerged as a potential clinical tool to do so. Materials & methods: We developed a cell-free, label-free SERS approach using gold nanoparticles (nanoSERS) to classify hematological malignancies referenced against two control cohorts: healthy and noncancer cardiovascular disease. A predictive model was built using machine-learning algorithms to incorporate disease burden scores for patients under standard treatment upon. Results: Linear- and quadratic-discriminant analysis distinguished three cohorts with 69.8 and 71.4% accuracies, respectively. A predictive nanoSERS model correlated (MSE = 1.6) with established clinical parameters. Conclusion: This study offers a proof-of-concept for the noninvasive monitoring of disease progression, highlighting the potential to incorporate nanoSERS into translational medicine.


Cancer patient quality of life is achieved by reassurance from informed doctors using the best clinical tools. Confirming the earliest detection or absence of disease ensures treatment is timely and recovery optimal. Here we show the potential for a new tool to be developed to reassure patients and inform doctors. We examined the 'chemical fingerprints' (Raman spectroscopic profiling) of patient's blood, enhanced by gold nanoparticles with a double-referenced machine learning algorithm. Teaching a machine to learn as it works ensures it is improving how it finds clinically important features in the chemical fingerprint. This helps patients live more confidently with cancer or in cancer recovery. Eventually, once fully trained and translated into a real-world hospital application, this could improve patient outcomes and quality of life.


Asunto(s)
Neoplasias Hematológicas , Nanopartículas del Metal , Análisis Discriminante , Oro , Humanos , Espectrometría Raman
6.
Food Funct ; 12(8): 3552-3561, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33900305

RESUMEN

Consumption of milk-derived whey proteins has been demonstrated to have insulin-sensitizing effects in mice and humans, in part through the generation of bioactive whey peptides. While whey peptides can prevent insulin resistance in vitro, it is unclear whether consumption of whey peptides can prevent obesity-induced metabolic dysfunction in vivo. We sought to determine whether whey peptides consumption can protect from high fat (HF) diet-induced obesity and dysregulation of glucose homeostasis. Male C57BL/6J mice were fed either a low or HF diet for 13 weeks. HF diet fed mice were provided drinking water with no addition (control), undigested whey protein isolate (WPI, 1 mg ml-1) or whey protein hydrolysate (WPH, 1 mg ml-1) throughout the diet regimen. Mice consuming WPH gained more body weight and were more glucose intolerant compared to those consuming WPI or water only. Despite increased body weight gain, perigonadal adipose tissue weight and lipid accumulation were unchanged. However, excess lipids accumulated ectopically in the liver and skeletal muscle in mice consuming WPH, which was associated with elevated inflammatory markers systemically and in adipose tissue, liver, and skeletal muscle. In skeletal muscle, mitochondrial fat oxidation and electron transport chain proteins were decreased with WPH consumption, indicative of mitochondrial dysfunction. Taken together, our results demonstrate that WPH, but not WPI, exacerbates HF-induced body weight gain and impairs glucose homeostasis, which is accompanied by increased inflammation, ectopic fat accumulation and mitochondrial dysfunction. Thus, our results argue against the use of dietary whey peptide supplementation as a preventative option against HF diet-induced metabolic dysfunction.


Asunto(s)
Obesidad/metabolismo , Aumento de Peso/efectos de los fármacos , Proteína de Suero de Leche/farmacología , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Proteína de Suero de Leche/administración & dosificación
7.
Artículo en Inglés | MEDLINE | ID: mdl-32903728

RESUMEN

Background: Predicting relapses of post-operative complications in obese patients who undergo cardiac surgery is significantly complicated by persistent metabolic maladaptation associated with obesity. Despite studies supporting the linkages of increased systemic branched-chain amino acids (BCAAs) driving the pathogenesis of obesity, metabolome wide studies have either supported or challenged association of circulating BCAAs with cardiovascular diseases (CVDs). Objective: We interrogated whether BCAA catabolic changes precipitated by obesity in the heart and adipose tissue can be reliable prognosticators of adverse outcomes following cardiac surgery. Our study specifically clarified the correlation between BCAA catabolizing enzymes, cellular BCAAs and branched-chain keto acids (BCKAs) with the severity of cardiometabolic outcomes in obese patients pre and post cardiac surgery. Methods: Male and female patients of ages between 44 and 75 were stratified across different body mass index (BMI) (non-obese = 17, pre-obese = 19, obese class I = 14, class II = 17, class III = 12) and blood, atrial appendage (AA), and subcutaneous adipose tissue (SAT) collected during cardiac surgery. Plasma and intracellular BCAAs and BC ketoacids (BCKAs), tissue mRNA and protein expression and activity of BCAA catabolizing enzymes were assessed and correlated with clinical parameters. Results: Intramyocellular, but not systemic, BCAAs increased with BMI in cardiac surgery patients. In SAT, from class III obese patients, mRNA and protein expression of BCAA catabolic enzymes and BCKA dehydrogenase (BCKDH) enzyme activity was decreased. Within AA, a concomitant increase in mRNA levels of BCAA metabolizing enzymes was observed, independent of changes in BCKDH protein expression or activity. BMI, indices of tissue dysfunction and duration of hospital stay following surgery correlated with BCAA metabolizing enzyme expression and metabolite levels in AA and SAT. Conclusion: This study proposes that in a setting of obesity, dysregulated BCAA catabolism could be an effective surrogate to determine cardiac surgery outcomes and plausibly predict premature re-hospitalization.


Asunto(s)
Tejido Adiposo/patología , Aminoácidos de Cadena Ramificada/metabolismo , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Enfermedades Cardiovasculares/cirugía , Corazón/fisiopatología , Obesidad/cirugía , Complicaciones Posoperatorias/diagnóstico , Tejido Adiposo/metabolismo , Adulto , Anciano , Enfermedades Cardiovasculares/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/metabolismo
8.
J Biol Chem ; 295(46): 15597-15621, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32878988

RESUMEN

Branched-chain α-keto acids (BCKAs) are catabolites of branched-chain amino acids (BCAAs). Intracellular BCKAs are cleared by branched-chain ketoacid dehydrogenase (BCKDH), which is sensitive to inhibitory phosphorylation by BCKD kinase (BCKDK). Accumulation of BCKAs is an indicator of defective BCAA catabolism and has been correlated with glucose intolerance and cardiac dysfunction. However, it is unclear whether BCKAs directly alter insulin signaling and function in the skeletal and cardiac muscle cell. Furthermore, the role of excess fatty acids (FAs) in perturbing BCAA catabolism and BCKA availability merits investigation. By using immunoblotting and ultra-performance liquid chromatography MS/MS to analyze the hearts of fasted mice, we observed decreased BCAA-catabolizing enzyme expression and increased circulating BCKAs, but not BCAAs. In mice subjected to diet-induced obesity (DIO), we observed similar increases in circulating BCKAs with concomitant changes in BCAA-catabolizing enzyme expression only in the skeletal muscle. Effects of DIO were recapitulated by simulating lipotoxicity in skeletal muscle cells treated with saturated FA, palmitate. Exposure of muscle cells to high concentrations of BCKAs resulted in inhibition of insulin-induced AKT phosphorylation, decreased glucose uptake, and mitochondrial oxygen consumption. Altering intracellular clearance of BCKAs by genetic modulation of BCKDK and BCKDHA expression showed similar effects on AKT phosphorylation. BCKAs increased protein translation and mTORC1 activation. Pretreating cells with mTORC1 inhibitor rapamycin restored BCKA's effect on insulin-induced AKT phosphorylation. This study provides evidence for FA-mediated regulation of BCAA-catabolizing enzymes and BCKA content and highlights the biological role of BCKAs in regulating muscle insulin signaling and function.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/antagonistas & inhibidores , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/sangre , Animales , Línea Celular , Dieta Alta en Grasa , Regulación hacia Abajo/efectos de los fármacos , Insulina/farmacología , Cetoácidos/sangre , Cetoácidos/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Miocardio/metabolismo , Palmitatos/farmacología , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165832, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32437957

RESUMEN

Glucolipotoxicity following nutrient overload causes cardiomyocyte injury by inhibiting TFEB and suppressing lysosomal function. We ascertained whether in addition to the amount, the type of fatty acids (FAs) and duration of FA exposure regulate TFEB action and dictate cardiomyocyte viability. Saturated FA, palmitate, but not polyunsaturated FAs decreased TFEB content in a concentration- and time-dependent manner in cardiomyocytes. Hearts from high-fat high-sucrose diet-fed mice exhibited a temporal decline in nuclear TFEB content with marked elevation of diacylglycerol and triacylglycerol, suggesting that lipid deposition and TFEB loss are concomitant molecular events. Next, we examined the identity of signaling and metabolic pathways engaged by the loss of TFEB action in the cardiomyocyte. Transcriptome analysis in murine cardiomyocytes with targeted deletion of myocyte TFEB (TFEB-/-) revealed enrichment of differentially expressed genes (DEG) representing pathways of nutrient metabolism, DNA damage and repair, cell death and cardiac function. Strikingly, genes involved in macroautophagy, mitophagy and lysosome function constituted a small portion of DEGs in TFEB-/- cardiomyocytes. In myoblasts and/or myocytes, nutrient overload-induced lipid droplet accumulation and caspase-3 activation were exacerbated by silencing TFEB or attenuated by overexpressing constitutively active TFEB. The effect of TFEB overexpression were persistent in the presence of Atg7 loss-of-function, signifying that the effect of TFEB in the myocyte is independent of changes in the macroautophagy pathway. In the cardiomyocyte, the non-canonical effect of TFEB to reprogram energy metabolism is more evident than the canonical action of TFEB on lysosomal autophagy. Loss of TFEB function perturbs metabolic pathways in the cardiomyocyte and renders the heart prematurely susceptible to nutrient overload-induced injury.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Muerte Celular/fisiología , Metabolismo de los Lípidos/fisiología , Miocitos Cardíacos/metabolismo , Animales , Apoptosis/fisiología , Autofagia/efectos de los fármacos , Núcleo Celular , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Transducción de Señal/fisiología , Transcriptoma
10.
Nutrients ; 12(2)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041341

RESUMEN

Deregulation of lipid metabolism and insulin function in muscle and adipose tissue are hallmarks of systemic insulin resistance, which can progress to type 2 diabetes. While previous studies suggested that milk proteins influence systemic glucose homeostasis and insulin function, it remains unclear whether bioactive peptides generated from whey alter lipid metabolism and its accumulation in muscle and adipose tissue. Therefore, we incubated murine 3T3-L1 preadipocytes and C2C12 myotubes with a whey peptide mixture produced through pepsin-pancreatin digestion, mimicking peptides generated in the gut from whey protein hydrolysis, and examined its effect on indicators of lipid metabolism and insulin sensitivity. Whey peptides, particularly those derived from bovine serum albumin (BSA), promoted 3T3-L1 adipocyte differentiation and triacylglycerol (TG) accumulation in accordance with peroxisome proliferator-activated receptor γ (PPARγ) upregulation. Whey/BSA peptides also increased lipolysis and mitochondrial fat oxidation in adipocytes, which was associated with the upregulation of peroxisome proliferator-activated receptor δ (PPARδ). In C2C12 myotubes, whey but not BSA peptides ameliorated palmitate-induced insulin resistance, which was associated with reduced inflammation and diacylglycerol accumulation, and increased sequestration of fatty acids in the TG pool. Taken together, our study suggests that whey peptides generated via pepsin-pancreatin digestion profoundly alter lipid metabolism and accumulation in adipocytes and skeletal myotubes.


Asunto(s)
Adipocitos/fisiología , Diferenciación Celular/efectos de los fármacos , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Proteína de Suero de Leche/farmacología , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Diglicéridos/metabolismo , Inflamación , Ratones , PPAR gamma/metabolismo , Pancreatina/metabolismo , Pepsina A/metabolismo , Estimulación Química , Triglicéridos/metabolismo
11.
Biochem J ; 477(1): 137-160, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31820786

RESUMEN

Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy with critical roles in several cancers. Lysosomal autophagy promotes cancer survival through the degradation of toxic molecules and the maintenance of adequate nutrient supply. Doxorubicin (DOX) is the standard of care treatment for triple-negative breast cancer (TNBC); however, chemoresistance at lower doses and toxicity at higher doses limit its usefulness. By targeting pathways of survival, DOX can become an effective antitumor agent. In this study, we examined the role of TFEB in TNBC and its relationship with autophagy and DNA damage induced by DOX. In TNBC cells, TFEB was hypo-phosphorylated and localized to the nucleus upon DOX treatment. TFEB knockdown decreased the viability of TNBC cells while increasing caspase-3 dependent apoptosis. Additionally, inhibition of the TFEB-phosphatase calcineurin sensitized cells to DOX-induced apoptosis in a TFEB dependent fashion. Regulation of apoptosis by TFEB was not a consequence of altered lysosomal function, as TFEB continued to protect against apoptosis in the presence of lysosomal inhibitors. RNA-Seq analysis of MDA-MB-231 cells with TFEB silencing identified a down-regulation in cell cycle and homologous recombination genes while interferon-γ and death receptor signaling genes were up-regulated. In consequence, TFEB knockdown disrupted DNA repair following DOX, as evidenced by persistent γH2A.X detection. Together, these findings describe in TNBC a novel lysosomal independent function for TFEB in responding to DNA damage.


Asunto(s)
Apoptosis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Reparación del ADN , Lisosomas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Doxorrubicina/farmacología , Técnicas de Silenciamiento del Gen , Humanos
12.
J Transl Med ; 17(1): 413, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822289

RESUMEN

BACKGROUND: The objectives of the study were to characterize and quantify cellular inflammation and structural remodeling of human atria and correlate findings with molecular markers of inflammation and patient surrogate outcome. METHODS: Voluntary participants undergoing heart surgery were enrolled in the study and blood samples were collected prior to surgery, and right atrium samples were harvested intraoperatively. Blood samples were analyzed by flow cytometry and complete blood counts. Atrial samples were divided for fixed fibrosis analysis, homogenized for cytokine analysis and digested for single cell suspension flow cytometry. RESULTS: A total of 18 patients were enrolled and samples assessed. Isolated cells from the atria revealed a CD45+ population of ~ 20%, confirming a large number of leukocytes. Further characterization revealed this population as 57% lymphocytes and 26% monocyte/macrophages (MoΦ), with the majority of the latter cells being classical (CD14++/CD16-). Interstitial fibrosis was present in 87% of samples and correlated significantly with patient age. Older patients (> 65) had significantly more atrial fibrosis and cellular inflammation. AFib patients had no distinguishing feature of atrial fibrosis and had significantly greater CD45+ MoΦ, increased expression of MMP9 and presented with a significant correlation in length of stay to CCL-2/MCP-1 and NLR (neutrophil-to-lymphocyte ratio). CONCLUSION: Atrial fibrosis is correlated with age and not determinate to AFib. However, severity of atrial leukocyte infiltration and markers of matrix degradation are determinant to AFib. This also correlated with CCL2 (or MCP-1) and NLR-indicative of marked inflammation. These data show the potential importance of diagnostic and prognostic assessments that could inform clinical decision making in regard to the intensity of AFib patient management.


Asunto(s)
Fibrilación Atrial/patología , Fibrilación Atrial/cirugía , Procedimientos Quirúrgicos Cardíacos , Leucocitos/patología , Factores de Edad , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/sangre , Plaquetas/patología , Recuento de Células , Estudios de Cohortes , Femenino , Fibrosis , Atrios Cardíacos/patología , Humanos , Tiempo de Internación , Antígenos Comunes de Leucocito/metabolismo , Linfocitos/patología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , Neutrófilos/patología , Pronóstico , Nodo Sinoatrial/patología
13.
J Lipid Res ; 59(10): 1805-1817, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30072447

RESUMEN

Autotaxin (ATX) is an adipokine that generates the bioactive lipid, lysophosphatidic acid (LPA). ATX-LPA signaling has been implicated in diet-induced obesity and systemic insulin resistance. However, it remains unclear whether the ATX-LPA pathway influences insulin function and energy metabolism in target tissues, particularly skeletal muscle, the major site of insulin-stimulated glucose disposal. The objective of this study was to test whether the ATX-LPA pathway impacts tissue insulin signaling and mitochondrial metabolism in skeletal muscle during obesity. Male mice with heterozygous ATX deficiency (ATX+/-) were protected from obesity, systemic insulin resistance, and cardiomyocyte dysfunction following high-fat high-sucrose (HFHS) feeding. HFHS-fed ATX+/- mice also had improved insulin-stimulated AKT phosphorylation in white adipose tissue, liver, heart, and skeletal muscle. Preserved insulin-stimulated glucose transport in muscle from HFHS-fed ATX+/- mice was associated with improved mitochondrial pyruvate oxidation in the absence of changes in fat oxidation and ectopic lipid accumulation. Similarly, incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function.


Asunto(s)
Resistencia a la Insulina , Lisofosfolípidos/metabolismo , Mitocondrias/patología , Obesidad/metabolismo , Obesidad/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Animales , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Especificidad de Órganos
14.
Nutrients ; 10(4)2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29570618

RESUMEN

Although simple in structure, lysophosphatidic acid (LPA) is a potent bioactive lipid that profoundly influences cellular signaling and function upon binding to G protein-coupled receptors (LPA1-6). The majority of circulating LPA is produced by the secreted enzyme autotaxin (ATX). Alterations in LPA signaling, in conjunction with changes in autotaxin (ATX) expression and activity, have been implicated in metabolic and inflammatory disorders including obesity, insulin resistance, and cardiovascular disease. This review summarizes our current understanding of the sources and metabolism of LPA with focus on the influence of diet on circulating LPA. Furthermore, we explore how the ATX-LPA pathway impacts obesity and obesity-associated disorders, including impaired glucose homeostasis, insulin resistance, and cardiovascular disease.


Asunto(s)
Adipocitos/metabolismo , Resistencia a la Insulina , Lisofosfolípidos/sangre , Obesidad/sangre , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Adipocitos/efectos de los fármacos , Adipocitos/patología , Animales , Antiinflamatorios/uso terapéutico , Fármacos Antiobesidad/uso terapéutico , Glucemia/metabolismo , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Humanos , Insulina/sangre , Terapia Molecular Dirigida , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores del Ácido Lisofosfatídico/efectos de los fármacos , Factores de Riesgo
15.
PLoS One ; 12(12): e0189402, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29236751

RESUMEN

BACKGROUND: Lysophosphatidic acid (LPA) receptor signaling has been implicated in cardiovascular and obesity-related metabolic disease. However, the distribution and regulation of LPA receptors in the myocardium and adipose tissue remain unclear. OBJECTIVES: This study aimed to characterize the mRNA expression of LPA receptors (LPA1-6) in the murine and human myocardium and adipose tissue, and its regulation in response to obesity. METHODS: LPA receptor mRNA levels were determined by qPCR in i) heart ventricles, isolated cardiomyocytes, and perigonadal adipose tissue from chow or high fat-high sucrose (HFHS)-fed male C57BL/6 mice, ii) 3T3-L1 adipocytes and HL-1 cardiomyocytes under conditions mimicking gluco/lipotoxicity, and iii) human atrial and subcutaneous adipose tissue from non-obese, pre-obese, and obese cardiac surgery patients. RESULTS: LPA1-6 were expressed in myocardium and white adipose tissue from mice and humans, except for LPA3, which was undetectable in murine adipocytes and human adipose tissue. Obesity was associated with increased LPA4, LPA5 and/or LPA6 levels in mice ventricles and cardiomyocytes, HL-1 cells exposed to high palmitate, and human atrial tissue. LPA4 and LPA5 mRNA levels in human atrial tissue correlated with measures of obesity. LPA5 mRNA levels were increased in HFHS-fed mice and insulin resistant adipocytes, yet were reduced in adipose tissue from obese patients. LPA4, LPA5, and LPA6 mRNA levels in human adipose tissue were negatively associated with measures of obesity and cardiac surgery outcomes. This study suggests that obesity leads to marked changes in LPA receptor expression in the murine and human heart and white adipose tissue that may alter LPA receptor signaling during obesity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Miocardio/metabolismo , Obesidad/metabolismo , ARN Mensajero/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Células 3T3-L1 , Adulto , Anciano , Animales , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Obesidad/etiología , Obesidad/genética
16.
Sci Rep ; 7(1): 3612, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28620170

RESUMEN

The global incidence of obesity has led to an increasing need for understanding the molecular mechanisms that drive this epidemic and its comorbidities. Quantitative real-time RT-PCR (RT-qPCR) is the most reliable and widely used method for gene expression analysis. The selection of suitable reference genes (RGs) is critical for obtaining accurate gene expression information. The current study aimed to identify optimal RGs to perform quantitative transcriptomic analysis based on RT-qPCR for obesity and diabetes research, employing in vitro and mouse models, and human tissue samples. Using the ReFinder program we evaluated the stability of a total of 15 RGs. The impact of choosing the most suitable RGs versus less suitable RGs on RT-qPCR results was assessed. Optimal RGs differed between tissue and cell type, species, and experimental conditions. By employing different sets of RGs to normalize the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), we show that sub-optimal RGs can markedly alter the PGC1α gene expression profile. Our study demonstrates the importance of validating RGs prior to normalizing transcriptional expression levels of target genes and identifies optimal RG pairs for reliable RT-qPCR normalization in cells and in human and murine muscle and adipose tissue for obesity/diabetes research.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Músculos/metabolismo , Obesidad/genética , Animales , Línea Celular , Estudios de Asociación Genética/métodos , Masculino , Ratones , Mioblastos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
17.
Front Cardiovasc Med ; 4: 12, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28361055

RESUMEN

BACKGROUND: The characteristics of circulating inflammatory cells (leukocytes) in patients undergoing heart surgery remains poorly understood. Recently, neutrophil-to-lymphocyte ratio (NLR) and specific monocyte subsets (based on CD14/CD16 expression) have been suggested as markers of inflammation and predictors of outcomes. The present study aims to characterize the influence cardiac surgery with cardiopulmonary bypass has on specific circulating leukocytes. METHODS: All enrolled patients had blood samples taken pre- (0 days), early post- (5 days), and late post- (90 days) surgery. Complete blood counts were performed and whole leukocyte isolations were obtained from blood samples and analyzed with flow cytometry. Fluorophore-linked antibodies (CD45, CD11b, CD14, and CD16) were added to the blood cell isolations and later assessed by flow cytometry. RESULTS: Seventeen patients were enrolled and samples obtained at 0, 5, and 90 days. We demonstrated a significant increase in NLR (2.2-fold; p = 0.0028) and CD16 mean fluorescence index (MFI-measure fluorescence intensity shift of CD16 in a gated cell population) early at day 5 (2.0-fold; p = 0.0051). Both NLR and CD16 MFI levels generally returned to normal by day 90. There was a significant positive correlation between NLR and CD16 MFI (r2 = 0.29; p = 0.0064). Adverse cardiovascular event (AE) was defined as prolonged length of hospitalization or readmission to hospital for cardiac reasons after discharge was seen in 59% of patients (no deaths occurred). In an unadjusted analysis of AE, we identified NLR as a likely predictor of AE, which meant that patients developing AE had a significantly higher baseline NLR (p = 0.0065), something that was not observed with CD16 MFI (p = 0.2541). CONCLUSION: Cardiac surgery is associated with a significant increase in NLR and CD16 MFI (non-classical monocytes) early after surgery corresponding to the early inflammatory phase after surgery. Furthermore, we have, for the first time, identified a significant correlation between NLR and CD16 MFI. While the mechanism for this relationship remains unclear, our findings support the use of a simple test of NLR as a biomarker of inflammation for predicting outcomes in cardiac surgery patients.

18.
J Pharmacol Exp Ther ; 361(3): 375-385, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28385952

RESUMEN

Dieldrin is a legacy organochlorine pesticide that is persistent in the environment, despite being discontinued from use in North America since the 1970s. Some epidemiologic studies suggest that exposure to dieldrin is associated with increased risks of neurodegenerative disease and breast cancer by inducing inflammatory responses in tissues as well as oxidative stress. However, the direct effects of organochlorine pesticides on the heart have not been adequately addressed to date given that these chemicals are detectable in human serum and are environmentally persistent; thus, individuals may show latent adverse effects in the cardiovascular system due to long-term, low-dose exposure over time. Our objective was to determine whether low-level exposure to dieldrin at an environmentally relevant dose results in aberrant molecular signaling in the vertebrate heart. Using transcriptomic profiling and immunoblotting, we determined the global gene and targeted protein expression response to dieldrin treatment and show that dieldrin affects gene networks in the heart that are associated with processes related to cardiovascular disease, specifically cardiac arrest and ventricular fibrillation. We report that genes regulating inflammatory responses, a significant risk factor for cardiovascular disease, are upregulated by dieldrin whereas transcripts related to lysosomal function are significantly downregulated. To verify these findings, proteins in these pathways were examined with immunoblotting, and our results demonstrate that dieldrin constitutively activates Akt/mTOR signaling and downregulates lysosomal genes, participating in autophagy. Our data demonstrate that dieldrin induces genes associated with cardiovascular dysfunction and compromised lysosomal physiology, thereby identifying a novel mechanism for pesticide-induced cardiotoxicity.


Asunto(s)
Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Dieldrín/farmacología , Corazón/efectos de los fármacos , Insecticidas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Femenino , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Masculino , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Pez Cebra
19.
Endocrinology ; 158(4): 791-803, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28324037

RESUMEN

Autotaxin (ATX) is an adipokine that generates the bioactive lipid, lysophosphatidic acid. Despite recent studies implicating adipose-derived ATX in metabolic disorders including obesity and insulin resistance, the nutritional and hormonal regulation of ATX in adipocytes remains unclear. The current study examined the regulation of ATX in adipocytes by glucose and insulin and the role of ATX in adipocyte metabolism. Induction of insulin resistance in adipocytes with high glucose and insulin concentrations increased ATX secretion, whereas coincubation with the insulin sensitizer, rosiglitazone, prevented this response. Moreover, glucose independently increased ATX messenger RNA (mRNA), protein, and activity in a time- and concentration-dependent manner. Glucose also acutely upregulated secreted ATX activity in subcutaneous adipose tissue explants. Insulin elicited a biphasic response. Acute insulin stimulation increased ATX activity in a PI3Kinase-dependent and mTORC1-independent manner, whereas chronic insulin stimulation decreased ATX mRNA, protein, and activity. To examine the metabolic role of ATX in 3T3-L1 adipocytes, we incubated cells with the ATX inhibitor, PF-8380, for 24 hours. Whereas ATX inhibition increased the expression of peroxisome proliferator-activated receptor-γ and its downstream targets, insulin signaling and mitochondrial respiration were unaffected. However, ATX inhibition enhanced mitochondrial H2O2 production. Taken together, this study suggests that ATX secretion from adipocytes is differentially regulated by glucose and insulin. This study also suggests that inhibition of autocrine/paracrine ATX-lysophosphatidic acid signaling does not influence insulin signaling or mitochondrial respiration, but increases reactive oxygen species production in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Glucosa/farmacología , Resistencia a la Insulina/fisiología , Insulina/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Ratones , Hidrolasas Diéster Fosfóricas/genética , ARN Mensajero , Rosiglitazona , Transducción de Señal/efectos de los fármacos , Tiazolidinedionas/farmacología , Factores de Tiempo
20.
Biochim Biophys Acta ; 1861(12 Pt A): 1893-1910, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27620487

RESUMEN

Impaired cardiac metabolism in the obese and diabetic heart leads to glucolipotoxicity and ensuing cardiomyopathy. Glucolipotoxicity causes cardiomyocyte injury by increasing energy insufficiency, impairing proteasomal-mediated protein degradation and inducing apoptosis. Proteasome-evading proteins are degraded by autophagy in the lysosome, whose metabolism and function are regulated by master regulator transcription factor EB (TFEB). Limited studies have examined the impact of glucolipotoxicity on intra-lysosomal signaling proteins and their regulators. By utilizing a mouse model of diet-induced obesity, type-1 diabetes (Akita) and ex-vivo model of glucolipotoxicity (H9C2 cells and NRCM, neonatal rat cardiomyocyte), we examined whether glucolipotoxicity negatively targets TFEB and lysosomal proteins to dysregulate autophagy and cause cardiac injury. Despite differential effects of obesity and diabetes on LC3B-II, expression of proteins facilitating autophagosomal clearance such as TFEB, LAMP-2A, Hsc70 and Hsp90 were decreased in the obese and diabetic heart. In-vivo data was recapitulated in H9C2 and NRCM cells, which exhibited impaired autophagic flux and reduced TFEB content when exposed to a glucolipotoxic milieu. Notably, overloading myocytes with a saturated fatty acid (palmitate) but not an unsaturated fatty acid (oleate) depleted cellular TFEB and suppressed autophagy, suggesting a fatty acid specific regulation of TFEB and autophagy in the cardiomyocyte. The effect of glucolipotoxicity to reduce TFEB content was also confirmed in heart tissue from patients with Class-I obesity. Therefore, during glucolipotoxicity, suppression of lysosomal autophagy was associated with reduced lysosomal content, decreased cathepsin-B activity and diminished cellular TFEB content likely rendering myocytes susceptible to cardiac injury.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diabetes Mellitus/metabolismo , Lisosomas/metabolismo , Miocitos Cardíacos/metabolismo , Obesidad/metabolismo , Animales , Apoptosis/fisiología , Autofagosomas/metabolismo , Línea Celular , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Oléico/metabolismo , Palmitatos/metabolismo , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA