Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31415826

RESUMEN

The bed nucleus of the stria terminalis (BNST) is a nodal structure in neural circuits controlling anxiety-related defensive behavioral responses. It contains neurons expressing the stress- and anxiety-related neuropeptide corticotropin-releasing hormone (Crh) as well as Crh receptors. Repeated daily subthreshold activation of Crh receptors in the BNST is known to induce a chronic anxiety-like state, but how this affects neurotransmitter-relevant gene expression in target regions of the BNST is still unclear. Since the BNST projects heavily to the dorsal raphe nucleus (DR), the main source of brain serotonin, we here tested the hypothesis that such repeated, anxiety-inducing activation of Crh receptors in the BNST alters the expression of serotonergic genes in the DR, including tph2, the gene encoding the rate-limiting enzyme for brain serotonin synthesis, and slc6a4, the gene encoding the serotonin transporter (SERT). For 5 days, adult male Wistar rats received daily, bilateral, intra-BNST microinjections of vehicle (1% bovine serum albumin in 0.9% saline, n = 11) or behaviorally subthreshold doses of urocortin 1 (Ucn1, n = 11), a potent Crh receptor agonist. Priming with Ucn1 increased tph2 mRNA expression selectively within the anxiety-related dorsal part of the DR (DRD) and decreased social interaction (SI) time, a measure of anxiety-related defensive behavioral responses in rodents. Decreased social interaction was strongly correlated with increased tph2 mRNA expression in the DRD. Together with previous studies, our data are consistent with the hypothesis that Crh-mediated control of the BNST/DRD-serotonergic system plays a key role in the development of chronic anxiety states, possibly also contributing to stress-induced relapses in drug abuse and addiction behavior.


Asunto(s)
Ansiedad/metabolismo , Ansiedad/psicología , Núcleo Dorsal del Rafe/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Núcleos Septales/metabolismo , Triptófano Hidroxilasa/biosíntesis , Animales , Ansiedad/genética , Enfermedad Crónica , Núcleo Dorsal del Rafe/efectos de los fármacos , Expresión Génica , Masculino , Ratas , Ratas Wistar , Receptores de Hormona Liberadora de Corticotropina/agonistas , Receptores de Hormona Liberadora de Corticotropina/genética , Núcleos Septales/efectos de los fármacos , Triptófano Hidroxilasa/genética , Urocortinas/metabolismo , Urocortinas/farmacología
2.
Cell Mol Neurobiol ; 38(1): 289-304, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29134419

RESUMEN

Peripheral immune activation can have profound physiologic and behavioral effects. One mechanism through which immune activation may affect physiology and behavior is through actions on brainstem neuromodulatory systems, such as serotonergic systems. To test this hypothesis, in Experiment 1, adult male BALB/c mice were implanted with telemetric recording devices and then immunized with Mycobacterium vaccae NCTC 11659 (0.1 mg, s.c.; Days - 28, - 14; N = 36). On Day 1, mice received an acute challenge with M. vaccae (0.1 mg, s.c.) or borate-buffered saline vehicle. Core body temperature and locomotor activity recordings were conducted during a 36 h period beginning 24 h prior to challenge; 12 h following acute challenge, mice were either tested in a 6-min forced swim test, or served as home cage controls (n = 9 per group). In Experiment 2, the protocol was repeated, but with the aim of assessing c-Fos expression in brainstem serotonergic neurons, assessed 90 min following exposure to forced swim (N = 32; n = 8 per group). In Experiment 1, acute M. vaccae challenge in M. vaccae-immunized mice, relative to vehicle-challenged controls, decreased locomotor activity and core body temperature measured 3 h following challenge, as measured by continuous telemetric recordings, and decreased immobility in the forced swim test measured 12 h following challenge. In Experiment 2, acute M. vaccae challenge in M. vaccae-immunized mice decreased home cage locomotion, in alignment with findings in Experiment 1, as measured by video-based behavioral analysis, and, among mice exposed to the forced swim test, increased c-Fos expression in subsets of serotonergic neurons within the dorsal raphe nucleus (DR) measured 13.5 h following challenge. Together, these data are consistent with the hypothesis that acute peripheral immune activation with a heat-killed preparation of M. vaccae transiently induces mild hypothermia in association with suppression of locomotor activity, activates subsets of serotonergic neurons in the DR, and induces antidepressant-like behavioral responses.


Asunto(s)
Antidepresivos/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Hipotermia/metabolismo , Mycobacterium/metabolismo , Neuronas Serotoninérgicas/metabolismo , Animales , Núcleo Dorsal del Rafe/microbiología , Cadena Alimentaria , Hipotermia/microbiología , Hipotermia/psicología , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas Serotoninérgicas/microbiología , Telemetría/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...