Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 652(Pt A): 1074-1084, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37647716

RESUMEN

Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of ß-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the ß-lactoglobulin adsorption and its effect on the premix membrane emulsification of ß-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed ß-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of ß-lactoglobulin) and the treatment of the silica surface (hydrophilization). The ß-lactoglobulin adsorption is driven by attractive electrostatic interactions between positively charged amino acid residues, i.e., lysin and negatively charged silanol groups, and is stabilized by hydrophobic interactions. The strong negative charges of the treated silica surfaces result in a high apparent layer thickness of ß-lactoglobulin. Although the conformation of the adsorbed ß-lactoglobulin layer varies with membrane treatment and the solvent properties, the ß-lactoglobulin adsorption offsets the effect of hydrophilization of the membrane so that the surface energies after ß-lactoglobulin adsorption are comparable. The resulting droplet size distribution of oil-in-water emulsions produced by premix membrane emulsification are similar for treated and untreated silica surfaces.


Asunto(s)
Lactoglobulinas , Agua , Adsorción , Lactoglobulinas/química , Emulsiones/química , Solventes , Agua/química
2.
Int J Biol Macromol ; 239: 124238, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37003386

RESUMEN

Aerogels, especially bio-based ones, present a promising option for wound dressing; specifically, because of their low toxicity, high stability, bio-compatibility, and good biological performance. In this study, agar aerogel was prepared and evaluated as novel wound dressing material in an in vivo rat study. Agar hydrogel was prepared by thermal gelation, after that the water inside the gel was exchanged with ethanol, and finally the alcogel was dried by supercritical CO2. The textural and rheological properties of the prepared aerogel were characterized, showing that the prepared agar aerogels possess high porosity (97-98 %), high surface area (250-330 m2g-1) as well as good mechanical properties and easiness of removal from the wound site. The results of the in vivo experiments macroscopically demonstrate the tissue compatibility of the aerogels in dorsal interscapular injured rat tissue and a shorter wound healing time comparable to that of gauze-treated animals. The histological analysis underpins the reorganisation and healing of the tissue for the injured skin of rats treated with agar aerogel wound dressing within the studied time frame.


Asunto(s)
Vendajes , Cicatrización de Heridas , Ratas , Animales , Agar , Piel , Hidrogeles/farmacología
3.
Antioxidants (Basel) ; 12(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36671043

RESUMEN

Proteins, such as ß-lactoglobulin (ß-Lg), are often used to stabilize oil-water-emulsions. By using an additional implementation of phenolic compounds (PC) that might interact with the proteins, the oxidative stability can be further improved. Whether PC have a certain pro-oxidant effect on oxidation processes, while interacting non-covalently (pH-6) or covalently (pH.9) with the interfacial protein-film, is not known. This study aimed to characterize the impact of phenolic acid derivatives (PCDs) on the antioxidant efficacy of the interfacial ß-Lg-film, depending on their structural properties and pH-value. Electron paramagnetic resonance (EPR) analyses were performed to assess the radical scavenging in the aqueous and oil phases of the emulsion, and the complexation of transition metals: these are well known to act as pro-oxidants. Finally, in a model linseed oil emulsion, lipid oxidation products were analyzed over storage time in order to characterize the antioxidant efficacy of the interfacial protein-film. The results showed that, at pH.6, PCDs can scavenge hydrophilic radicals and partially scavenge hydrophobic radicals, as well as reduce transition metals. As expected, transition metals are complexed to only a slight degree, leading to an increased lipid oxidation through non-complexed reduced transition metals. At pH.9, there is a strong complexation between PCDs and the transition metals and, therefore, a decreased ability to reduce the transition metals; these do not promote lipid oxidation in the emulsion anymore.

4.
J Trace Elem Med Biol ; 71: 126934, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35065468

RESUMEN

BACKGROUND: Organic zinc sources for the treatment of zinc deficiency or as a supplement to a specific diet are increasingly needed. Zinc-enriched yeast (ZnYeast) biomass is a promising nutritional supplement for this essential micronutrient. However, these products are not yet authorized in the European Union and a clear position from the European Food Safety Authority on the use of ZnYeast as a zinc supplement is pending, demanding more data on its bioavailability. OBJECTIVE: The study aimed to produce a ZnYeast based on a Saccharomyces genus (S. pastorianus Rh), characterize its zinc enrichment quota, cellular distribution of zinc, and evaluate its zinc bioavailability after human digestion by comparing it to commonly used inorganic and organic zinc supplements (ZnO, ZnSO4, zinc gluconate, and zinc aspartate). METHOD AND MAIN FINDINGS: The zinc-enriched S. pastorianus Rh contained 5.9 ± 1.0 mg zinc/g yeast, which was predominantly localized on the cell surface according to its characterization on the microscale with scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX). Combined experiments with a human in vitro digestion model and the in vitro intestinal cell model Caco-2 showed that intestinal zinc bioavailability of digested yeast biomass was comparable to the other zinc supplements, apart from ZnO, which was somewhat less bioavailable. Moreover, zinc released from digested ZnYeast was available for biological processes within the enterocytes, leading to mRNA upregulation of metallothionein, a biomarker of intestinal zinc status, and significantly elevated the cellular labile zinc pool. CONCLUSIONS: Our findings demonstrated that ZnYeast represents a suitable nutritional source for organically bound zinc and highlighted optimization strategies for future production of dietary ZnYeast.


Asunto(s)
Óxido de Zinc , Zinc , Humanos , Zinc/farmacología , Zinc/metabolismo , Saccharomyces cerevisiae/metabolismo , Células CACO-2 , Óxido de Zinc/farmacología , Disponibilidad Biológica , Digestión , Técnicas de Cultivo de Célula
5.
J Colloid Interface Sci ; 596: 173-183, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33839350

RESUMEN

HYPOTHESIS: High hydrostatic pressure treatment causes structural changes in interfacial-active ß-lactoglobulin (ß-lg). We hypothesized that the pressure-induced structural changes affect the intra- and intermolecular interactions which determine the interfacial activity of ß-lg. The conducted experimental and numerical investigations could contribute to the mechanistic understanding of the adsorption behavior of proteins in food-related emulsions. EXPERIMENTS: We treated ß-lg in water at pH 7 with high hydrostatic pressures up to 600 MPa for 10 min at 20 °C. The secondary structure was characterized with Fourier-transform infrared spectroscopy (FTIR) and circular dichroism (CD), the surface hydrophobicity and charge with fluorescence-spectroscopy and ζ-potential, and the quaternary structure with membrane-osmometry, analytical ultracentrifugation (AUC) and mass spectrometry (MS). Experimental analyses were supported through molecular dynamic (MD) simulations. The adsorption behavior was investigated with pendant drop analysis. FINDINGS: MD simulation revealed a pressure-induced molten globule state of ß-lg, confirmed by an unfolding of ß-sheets with FTIR, a stabilization of α-helices with CD and loss in tertiary structure induced by an increase in surface hydrophobicity. Membrane-osmometry, AUC and MS indicated the formation of non-covalently linked dimers that migrated slower through the water phase, adsorbed more quickly due to hydrophobic interactions with the oil, and lowered the interfacial tension more strongly than reference ß-lg.


Asunto(s)
Lactoglobulinas , Aceites , Adsorción , Emulsiones , Presión Hidrostática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA