Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Anal Chem ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745349

RESUMEN

In contrast to intracellular gene transfer, the direct delivery of expressed proteins is a significantly challenging yet essential technique for elucidating cellular functions, including protein complex structure, liquid-liquid phase separation, therapeutic applications, and reprogramming. In this study, we developed a hybrid nanotube (HyNT) stamp system that physically inserts the HyNTs into adhesive cells, enabling the injection of target molecules through HyNT ducts. This system demonstrates the capability to deliver multiple proteins, such as lactate oxidase (LOx) and ubiquitin (UQ), to approximately 1.8 × 107 adhesive cells with a delivery efficiency of 89.9% and a viability of 97.1%. The delivery of LOx enzyme into HeLa cancer cells induced cell death, while enzyme-delivered healthy cells remained viable. Furthermore, our stamp system can deliver an isotope-labeled UQ into adhesive cells for detection by nuclear magnetic resonance (NMR).

2.
Biomol NMR Assign ; 18(1): 71-78, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551798

RESUMEN

The intraflagellar transport (IFT) machinery plays a crucial role in the bidirectional trafficking of components necessary for ciliary signaling, such as the Hedgehog, Wnt/PCR, and cAMP/PKA systems. Defects in some components of the IFT machinery cause dysfunction, leading to a wide range of human diseases and developmental disorders termed ciliopathies, such as nephronophthisis. The IFT machinery comprises three sub-complexes: BBsome, IFT-A, and IFT-B. The IFT protein 54 (IFT54) is an important component of the IFT-B sub-complex. In anterograde movement, IFT54 binds to active kinesin-II, walking along the cilia microtubule axoneme and carrying the dynein-2 complex in an inactive state, which works for retrograde movement. Several mutations in IFT54 are known to cause Senior-Loken syndrome, a ciliopathy. IFT54 possesses a divergent Calponin Homology (CH) domain termed as NN-CH domain at its N-terminus. However, several aspects of the function of the NN-CH domain of IFT54 are still obscure. Here, we report the 1H, 15N, and 13C resonance assignments of the NN-CH domain of human IFT54 and its solution structure. The NN-CH domain of human IFT54 adopts essentially the α1-α2-α3-α4-α5 topology as that of mouse IFT54, whose structure was determined by X-ray crystallographic study. The structural information and assignments obtained in this study shed light on the molecular function of the NN-CH domain in IFT54.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Humanos , Calponinas , Proteínas de Microfilamentos/química , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Soluciones , Isótopos de Nitrógeno
3.
JACS Au ; 3(6): 1658-1669, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37388687

RESUMEN

Ras acts as a molecular switch to control intracellular signaling on the plasma membrane (PM). Elucidating how Ras associates with PM in the native cellular environment is crucial for understanding its control mechanism. Here, we used in-cell nuclear magnetic resonance (NMR) spectroscopy combined with site-specific 19F-labeling to explore the membrane-associated states of H-Ras in living cells. The site-specific incorporation of p-trifluoromethoxyphenylalanine (OCF3Phe) at three different sites of H-Ras, i.e., Tyr32 in switch I, Tyr96 interacting with switch II, and Tyr157 on helix α5, allowed the characterization of their conformational states depending on the nucleotide-bound states and an oncogenic mutational state. Exogenously delivered 19F-labeled H-Ras protein containing a C-terminal hypervariable region was assimilated via endogenous membrane-trafficking, enabling proper association with the cell membrane compartments. Despite poor sensitivity of the in-cell NMR spectra of membrane-associated H-Ras, the Bayesian spectral deconvolution identified distinct signal components on three 19F-labeled sites, thus offering the conformational multiplicity of H-Ras on the PM. Our study may be helpful in elucidating the atomic-scale picture of membrane-associated proteins in living cells.

4.
Sci Rep ; 13(1): 1435, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697449

RESUMEN

The assembly state of enzymes is gaining interest as a mechanism for regulating the function of enzymes in living cells. One of the current topics in enzymology is the relationship between enzyme activity and the assembly state due to liquid-liquid phase separation. In this study, we demonstrated enzyme activation via the formation of enzyme assemblies using L-lactate oxidase (LOX). LOX formed hundreds of nanometer-scale assemblies with poly-L-lysine (PLL). In the presence of ammonium sulfate, the LOX-PLL clusters formed micrometer-scale liquid droplets. The enzyme activities of LOX in clusters and droplets were one order of magnitude higher than those in the dispersed state, owing to a decrease in KM and an increase in kcat. Moreover, the clusters exhibited a higher activation effect than the droplets. In addition, the conformation of LOX changed in the clusters, resulting in increased enzyme activation. Understanding enzyme activation and assembly states provides important information regarding enzyme function in living cells, in addition to biotechnology applications.


Asunto(s)
Oxigenasas de Función Mixta , Oxidorreductasas , Lisina , Proteína-Lisina 6-Oxidasa
5.
RSC Med Chem ; 13(9): 1100-1111, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36324497

RESUMEN

Fragment-based drug discovery (FBDD), which involves small compounds <300 Da, has been recognized as one of the most powerful tools for drug discovery. In FBDD, the affinity of hit compounds tends to be low, and the analysis of protein-compound interactions becomes difficult. In an effort to overcome such difficulty, we developed a 19F-NMR screening method optimizing a 19F chemical library focusing on highly soluble monomeric molecules. Our method was successfully applied to four proteins, including protein kinases and a membrane protein. For FKBP12, hit compounds were carefully validated by protein thermal shift analysis, 1H-15N HSQC NMR spectroscopy, and isothermal titration calorimetry to determine dissociation constants and model complex structures. It should be noted that the 1H and 19F saturation transfer difference experiments were crucial to obtaining highly precise model structures. The combination of 19F-NMR analysis and the optimized 19F chemical library enables the modeling of the complex structure made up of a weak binder and its target protein.

6.
Biomol NMR Assign ; 16(2): 297-303, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35666428

RESUMEN

Ribosome biogenesis is a complicated, multistage process coordinated by ribosome assembly factors. Ribosome binding factor A (RbfA) is a bacterial one, which possesses a single structural type-II KH domain. By this domain, RbfA binds to a 16S rRNA precursor in small ribosomal subunits to promote its 5'-end processing. The human RbfA homolog, mtRbfA, binds to 12S rRNAs in the mitoribosomal small subunits and promotes its critical maturation process, the dimethylation of two highly conserved consecutive adenines, which differs from that of RbfA. However, the structural basis of the mtRbfA-mediated maturation process is poorly understood. Herein, we report the 1H, 15N, and 13C resonance assignments of the KH domain of mtRbfA and its solution structure. The mtRbfA domain adopts essentially the same α1-ß1-ß2-α2(kinked)-ß3 topology as the type-II KH domain. Comparison with the RbfA counterpart showed structural differences in specific regions that function as a putative RNA-binding site. Particularly, the α2 helix of mtRbfA forms a single helix with a moderate kink at the Ser-Ala-Ala sequence, whereas the corresponding α2 helix of RbfA is interrupted by a distinct kink at the Ala-x-Gly sequence, characteristic of bacterial RbfA proteins, to adopt an α2-kink-α3 conformation. Additionally, the region linking α1 and ß1 differs considerably in the sequence and structure between RbfA and mtRbfA. These findings suggest some variations of the RNA-binding mode between them and provide a structural basis for mtRbfA function in mitoribosome biogenesis.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Mitocondriales/química , Ribosomas Mitocondriales , Proteínas de Unión al ARN/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Humanos , Ribosomas Mitocondriales/metabolismo , Resonancia Magnética Nuclear Biomolecular , Precursores del ARN/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Vitamina B 12/análogos & derivados
7.
JACS Au ; 2(1): 223-233, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35098239

RESUMEN

Direct delivery of proteins into plants represents a promising alternative to conventional gene delivery for probing and modulating cellular functions without the risk of random integration of transgenes into the host genome. This remains challenging, however, because of the lack of a protein delivery tool applicable to diverse plant species and the limited information about the entry mechanisms of exogenous proteins in plant cells. Here, we present the synthetic multidomain peptide (named dTat-Sar-EED4) for cytosolic protein delivery in various plant species via simple peptide-protein coincubation. dTat-Sar-EED4 enabled the cytosolic delivery of an active enzyme with up to ∼20-fold greater efficiency than previously described cell-penetrating peptides in several model plant systems. Our analyses using pharmacological inhibitors and transmission electron microscopy revealed that dTat-Sar-EED4 triggered a unique endocytic mechanism for cargo protein internalization. This endocytic mechanism shares several features with macropinocytosis, including the dependency of actin polymerization, sensitivity to phosphatidylinositol-3 kinase activity, and formation of membrane protrusions and large intracellular vesicles (>200 nm in diameter), even though macropinocytosis has not been identified to date in plants. Our study thus presents a robust molecular tool that can induce a unique cellular uptake mechanism for the efficient transport of bioactive proteins into plants.

8.
Biomol NMR Assign ; 16(1): 41-49, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34783967

RESUMEN

Matrin-3 is a multifunctional protein that binds to both DNA and RNA. Its DNA-binding activity is linked to the formation of the nuclear matrix and transcriptional regulation, while its RNA-binding activity is linked to mRNA metabolism including splicing, transport, stabilization, and degradation. Correspondingly, Matrin-3 has two zinc finger domains for DNA binding and two consecutive RNA recognition motif (RRM) domains for RNA binding. Matrin-3 has been reported to cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) when its disordered region contains pathogenic mutations. Simultaneously, it has been shown that the RNA-binding activity of Matrin-3 mediated by its RRM domains, affects the formation of insoluble cytoplasmic granules, which are related to the pathogenic mechanism of ALS/FTD. Thus, the effect of the RRM domains on the phase separation of condensed protein/RNA mixtures has to be clarified for a comprehensive understanding of ALS/FTD. Here, we report the 1H, 15N, and 13C resonance assignments of the two RNA binding domains and their solution structures. The resonance assignments and the solution structures obtained in this work will contribute to the elucidation of the molecular basis of Matrin-3 in the pathogenic mechanism of ALS and/or FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos , Resonancia Magnética Nuclear Biomolecular , ARN/metabolismo , Motivo de Reconocimiento de ARN
9.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34893542

RESUMEN

Glycolysis plays a fundamental role in energy production and metabolic homeostasis. The intracellular [adenosine triphosphate]/[adenosine diphosphate] ([ATP]/[ADP]) ratio controls glycolytic flux; however, the regulatory mechanism underlying reactions catalyzed by individual glycolytic enzymes enabling flux adaptation remains incompletely understood. Phosphoglycerate kinase (PGK) catalyzes the reversible phosphotransfer reaction, which directly produces ATP in a near-equilibrium step of glycolysis. Despite extensive studies on the transcriptional regulation of PGK expression, the mechanism in response to changes in the [ATP]/[ADP] ratio remains obscure. Here, we report a protein-level regulation of human PGK (hPGK) by utilizing the switching ligand-binding cooperativities between adenine nucleotides and 3-phosphoglycerate (3PG). This was revealed by nuclear magnetic resonance (NMR) spectroscopy at physiological salt concentrations. MgADP and 3PG bind to hPGK with negative cooperativity, whereas MgAMPPNP (a nonhydrolyzable ATP analog) and 3PG bind to hPGK with positive cooperativity. These opposite cooperativities enable a shift between different ligand-bound states depending on the intracellular [ATP]/[ADP] ratio. Based on these findings, we present an atomic-scale description of the reaction scheme for hPGK under physiological conditions. Our results indicate that hPGK intrinsically modulates its function via ligand-binding cooperativities that are finely tuned to respond to changes in the [ATP]/[ADP] ratio. The alteration of ligand-binding cooperativities could be one of the self-regulatory mechanisms for enzymes in bidirectional pathways, which enables rapid adaptation to changes in the intracellular environment.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Ácidos Glicéricos/metabolismo , Glucólisis/fisiología , Fosfoglicerato Quinasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Catálisis , Dominio Catalítico , Escherichia coli , Humanos , Modelos Moleculares , Fosfoglicerato Quinasa/genética , Unión Proteica , Conformación Proteica
10.
Protein Sci ; 30(11): 2233-2245, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34523753

RESUMEN

HIV-1 capsid is comprised of over a hundred p24 protein molecules, arranged as either pentamers or hexamers. Three p24 mutants with amino acid substitutions in capsid N-terminal domain protein were examined: G60W (α3-4 loop), M68T (helix 4), and P90T (α4-5 loop), which exhibited no viability for biological activity. One common structural feature of the three p24 N-domain mutants, examined by NMR, was the long-range effect of more ß-structures at the ß2-strand in the N-terminal region compared with the wild-type. In addition, the presence of fewer helical structures was observed in M68T and P90T, beyond the broad area from helix 1 to the C-terminal part of helix 4. This suggests that both N-terminal beta structures and helices play important roles in the formation of p24 hexamers and pentamers. Next, compared with P90T, we examined cis-conformation or trans-conformation of wild-type adopted by isomerization at G89-P90. Since P90T mutant adopts only a trans-conformation, comparison of chemical shifts and signal intensities between each spectra revealed that the major peaks (about 85%) in the spectrum of wild-type correspond to trans-conformation. Furthermore, it was indicated that the region in cis-conformation (minor; 15%) was more stabilized than that observed in trans-conformation, based on the analyses of heteronuclear Overhauser effect as well as the order-parameter. Therefore, it was concluded that the cis-conformation is more favorable than the trans-conformation for the interaction between the p24 N-terminal domain and cyclophilin-A. This is because HIV-1 with a P90T protein, which adopts only a trans-conformation, is associated with non-viability of biological activity.


Asunto(s)
Sustitución de Aminoácidos , Proteína p24 del Núcleo del VIH/química , VIH-1/química , Modelos Moleculares , Mutación Missense , Proteína p24 del Núcleo del VIH/genética , Proteína p24 del Núcleo del VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , Conformación Proteica en Hélice alfa , Dominios Proteicos
11.
J Virol ; 95(20): e0190620, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34346768

RESUMEN

Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus Potexvirus, the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain, and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. Nuclear magnetic resonance (NMR) analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a green fluorescent protein (GFP) fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA colocated during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions, and in vitro high-molecular-weight complexes were formed by both replication-competent and -incompetent viral replicons and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. IMPORTANCE RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order Tymovirales. Substitution of the proline residue, but not the other residues necessary for replication, allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.


Asunto(s)
Potexvirus/genética , Potexvirus/metabolismo , Proteinas del Complejo de Replicasa Viral/genética , Secuencia de Aminoácidos/genética , Proteínas de la Membrana/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Enfermedades de las Plantas/virología , Prolina/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Replicón/genética , Nicotiana/virología , Proteínas Virales/metabolismo , Proteinas del Complejo de Replicasa Viral/metabolismo , Replicación Viral/genética
12.
Biochem Biophys Res Commun ; 551: 107-113, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33725571

RESUMEN

Site-directed mutagenesis (SDM), an indispensable method in molecular biology and protein engineering, is rather time-consuming and laborious. Protein engineering, especially that of enzymes, nowadays increasingly relies on rational design approaches in which both SDM and protein expression are the bottlenecks because they are generally based on the recombinant DNA technology. Here, we developed a new PCR-based mutagenesis method, DiRect, that achieves high performance in product quality (≥99% substitution) without recombinant DNA technology. We applied DiRect in combination with a cell-free protein expression system to an industrially relevant enzyme, nicotinamide adenine dinucleotide phosphate-dependent 3-quinuclidinone reductase from Rhodotorula rubra. In a single round of screening, 90 newly designed mutant proteins were produced within two days, and an unreported mutant (Q135I) exhibiting much higher thermostability than the wild-type enzyme was successfully identified within one extra day. Thus, DiRect is a simple, efficient, and potentially scalable SDM method.


Asunto(s)
Mutagénesis Sitio-Dirigida/métodos , Ingeniería de Proteínas/métodos , Sistema Libre de Células , Estabilidad de Enzimas , Mutación , NADP/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Rhodotorula/enzimología
13.
Biomol NMR Assign ; 15(1): 1-7, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32930954

RESUMEN

In humans, YTH (YT521-B homology) domain containing protein 2 (YTHDC2) plays a crucial role in the phase-shift from mitosis to meiosis. YTH domains bind to methylated adenosine nucleotides such as m6A. In a phylogenic tree, the YTH domain of YTHDC2 (YTH2) and that of the YTH containing protein YTHDC1 (YTH1) belong to the same sub-group. However, the binding affinity of m6A differs between these proteins. Here, we report 1H, 13C and 15N resonance assignment of YTH2 and its solution structure to examine the difference of the structural architecture and the dynamic properties of YTH1 and YTH2. YTH2 adopts a ß1-α1-ß2-α2-ß3-ß4-ß5-α3-ß6-α4 topology, which was also observed in YTH1. However, the ß4-ß5 loops of YTH1 and YTH2 are distinct in length and amino acid composition. Our data revealed that, unlike in YTH1, the structure of m6A-binding pocket of YTH2 formed by the ß4-ß5 loop is stabilized by electrostatic interaction. This assignment and the structural information for YTH2 will provide the insight on the further functional research of YTHDC2.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Adenosina , ARN
14.
Biomacromolecules ; 22(3): 1080-1090, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33316156

RESUMEN

Direct delivery of enzymes into intact plants using cell-penetrating peptides (CPPs) is an attractive approach for modifying plant functions without genetic modification. However, by conventional methods, it is difficult to maintain the enzyme activity for a long time because of proteolysis of the enzymes under physiological conditions. Here, we developed a novel enzyme delivery system using polyion complex vesicles (PICsomes) to protect the enzyme from proteases. We created PICsome-bearing reactive groups at the surface by mixing an anionic block copolymer, alkyne-TEG-P(Lys-COOH), and a cationic peptide, P(Lys). The PICsome encapsulated neomycin phosphotransferase II (NPTII), a kanamycin resistance enzyme, and protected NPTII from proteases in vitro. A CPP-modified PICsome delivered NPTII into the root hair cells of Arabidopsis thaliana seedlings and provided kanamycin resistance in the seedlings that lasted for 7 days. Thus, the PICsome-mediated enzyme delivery system is a promising method for imparting long-term transient traits to plants without genetic modification.


Asunto(s)
Arabidopsis , Péptidos de Penetración Celular , Cationes , Farmacorresistencia Microbiana , Polímeros
15.
Nanoscale ; 12(36): 18844-18856, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32896843

RESUMEN

Plant cells contain groups of biomolecules that participate together in a particular biological process. Exogenous codelivery of multiple biomolecules is an essential step for elucidation of the biological significance of these molecules and enables various biotechnological applications in plants. However, the currently existing biomolecule delivery methods face difficulties in delivering multiple components into plant cells, mediating transgene expression, and maintaining the stability of the numerous components and lead to delays in biomolecular function. Cell-penetrating peptides (CPPs) have demonstrated remarkable abilities to introduce diverse biomolecules into various plant species. Here, we employed the engineered CPP KH9-BP100 as a carrier to deliver multiple biomolecules into plant cells and performed a bimolecular fluorescence complementation assay to assess the simultaneous introduction of multiple biomolecules. We demonstrate that multiple biomolecule/CPP cargos can be simultaneously internalized by a particular plant cell, albeit with different efficiencies. We present a cutting-edge technique for codelivery of multiple biomolecules into plant cells that can be used for elucidation of functional correlations and for metabolic engineering.


Asunto(s)
Péptidos de Penetración Celular , Células Vegetales
16.
Biotechnol Bioeng ; 117(6): 1628-1639, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32162674

RESUMEN

Protein folding is usually slowed-down at low temperatures, and thus low-temperature expression is an effective strategy to improve the soluble yield of aggregation-prone proteins. In this study, we investigated the effects of a variety of cold shock proteins and domains (Csps) on an Escherichia coli cell extract-based cell-free protein synthesis system (CF). Most of the 12 Csps that were successfully prepared dramatically improved the protein yields, by factors of more than 5 at 16°C and 2 at 23°C, to levels comparable to those obtained at 30°C. Their stimulatory effects were complementary to each other, while CspD and CspH were inhibitory. The Csps' effects correlated well with their Pfam CSD family scores (PF00313.22). All of the investigated Csps, except CspH, similarly possessed RNA binding and chaperon activities and increased the messenger RNA amount irrespective of their effect, suggesting that the proper balance between these activities was required for the enhancement. Unexpectedly, the 5'-untranslated region of cspA was less effective as the leader sequence. Our results demonstrated that the use of the Csps presented in this study will provide a simple and highly effective strategy for the CF, to improve the soluble yields of aggregation-prone proteins.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/metabolismo , Escherichia coli/metabolismo , Proteínas y Péptidos de Choque por Frío/genética , Escherichia coli/genética , Humanos , Microbiología Industrial , Agregado de Proteínas , Biosíntesis de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
J Biomol NMR ; 74(2-3): 125-137, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32002710

RESUMEN

Signal overlapping is a major bottleneck for protein NMR analysis. We propose a new method, stable-isotope-assisted parameter extraction (SiPex), to resolve overlapping signals by a combination of amino-acid selective isotope labeling (AASIL) and tensor decomposition. The basic idea of Sipex is that overlapping signals can be decomposed with the help of intensity patterns derived from quantitative fractional AASIL, which also provides amino-acid information. In SiPex, spectra for protein characterization, such as 15N relaxation measurements, are assembled with those for amino-acid information to form a four-order tensor, where the intensity patterns from AASIL contribute to high decomposition performance even if the signals share similar chemical shift values or characterization profiles, such as relaxation curves. The loading vectors of each decomposed component, corresponding to an amide group, represent both the amino-acid and relaxation information. This information link provides an alternative protein analysis method that does not require "assignments" in a general sense; i.e., chemical shift determinations, since the amino-acid information for some of the residues allows unambiguous assignment according to the dual selective labeling. SiPex can also decompose signals in time-domain raw data without Fourier transform, even in non-uniformly sampled data without spectral reconstruction. These features of SiPex should expand biological NMR applications by overcoming their overlapping and assignment problems.


Asunto(s)
Aminoácidos/química , Marcaje Isotópico , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular
18.
RSC Adv ; 10(30): 17582-17592, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35515590

RESUMEN

Almost all natural proteins are composed exclusively of l-amino acids, and this chirality influences their properties, functions, and selectivity. Proteases can recognize proteins composed of l-amino acids but display lower selectivity for their stereoisomers, d-amino acids. Taking this as an advantage, d-amino acids can be used to develop polypeptides or biobased materials with higher biostability. Chemoenzymatic peptide synthesis is a technique that uses proteases as biocatalysts to synthesize polypeptides, and d-stereospecific proteases can be used to synthesize polypeptides incorporating d-amino acids. However, engineered proteases with modified catalytic activities are required to allow the incorporation of d-amino acids with increased efficiency. To understand the stereospecificity presented by proteases and their involvement in polymerization reactions, we studied d-aminopeptidase. This enzyme displays the ability to efficiently synthesize poly d-alanine-based peptides under mild conditions. To elucidate the mechanisms involved in the unique specificity of d-aminopeptidase, we performed quantum mechanics/molecular mechanics simulations of its polymerization reaction and determined the energy barriers presented by the chiral substrates. The enzyme faces higher activation barriers for the acylation and aminolysis reactions with the l-stereoisomer than with the d-substrate (10.7 and 17.7 kcal mol-1 higher, respectively). The simulation results suggest that changes in the interaction of the substrate with Asn155 influence the stereospecificity of the polymerization reaction.

19.
PLoS One ; 14(7): e0214033, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31361745

RESUMEN

Direct protein delivery into intact plants remains a challenge for the agricultural and plant science fields. Cell-penetrating peptide (CPP)-mediated protein delivery requires the binding of CPPs to a protein to carry the protein into the cell through the cell wall and lipid bilayer. Thus, we prepared ionic complexes of a CPP-containing carrier peptide and a cargo protein, namely, Citrine yellow fluorescent protein, and subsequently studied their physicochemical properties. Two types of carrier peptides, BP100(KH)9 and BP100CH7, were investigated for delivery efficiency into rice callus. Both BP100(KH)9 and BP100CH7 successfully introduced Citrine protein into rice callus cells under pressure and vacuum treatment. Moreover, delivery efficiency varied at different growth stages of rice callus; 5-day rice callus was a more efficient recipient for Citrine than 21-day callus.


Asunto(s)
Proteínas Bacterianas/administración & dosificación , Péptidos de Penetración Celular/metabolismo , Portadores de Fármacos/metabolismo , Proteínas Luminiscentes/administración & dosificación , Oligopéptidos/metabolismo , Oryza/metabolismo , Proteínas Bacterianas/metabolismo , Péptidos de Penetración Celular/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Iones/química , Iones/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Oligopéptidos/química
20.
Chem Commun (Camb) ; 53(81): 11245-11248, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28960222

RESUMEN

By using in-cell NMR experiments, we have demonstrated that the protein folding state in cells is significantly influenced by the cellular health conditions. hAK1 was denatured in cells under stressful culture conditions, while it remained functional and properly folded in cells continuously supplied with a fresh medium.


Asunto(s)
Adenilato Quinasa/química , Pliegue de Proteína , Adenilato Quinasa/metabolismo , Células HeLa , Humanos , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA