Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 9: 936623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172613

RESUMEN

Haematopoietic stem and progenitor cells (HSPCs) are used for transplantation to reconstruct the haematopoietic pathways in humans receiving severe chemotherapy. However, the characteristics of canine HSPCs, such as specific surface antigens and gene expression profiles, are still unclear. This study aimed to characterise the haematopoietic ability and gene expression profiles of canine bone marrow HSPCs in healthy dogs. In this study, the CD34 positive (CD34+) cells were defined as classical HSPCs, CD34+/CD45 diminished (CD45dim) cells as more enriched HSPCs, and whole viable cells as controls. Haematopoietic abilities and gene expression profiles were evaluated using a colony-forming unit assay and RNA-sequencing analysis. Canine CD34+/CD45dim cells exhibited a significantly higher haematopoietic colony formation ability and expressed more similarity in the gene expression profiles to human and mouse HSPCs than those of the other cell fractions. Furthermore, the canine CD34+/CD45dim cells expressed candidate cell surface antigens necessary to define the canine haematopoietic hierarchy roadmap. These results indicate that the canine CD34+/CD45dim cells express the HSPC characteristics more than the other cell fractions, thereby suggesting that these cells have the potential to be used for studying haematopoietic stem cells in dogs.

2.
Regen Ther ; 15: 210-215, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426221

RESUMEN

INTRODUCTION: Primary cultured hepatocytes are an important model for early safety evaluations of newly developed drugs. Many factors, however, hinder the wider applications of this technology, especially the difficulty to maintain these cells in long-term culture. To date, creating a stable supply of human or animal hepatocytes with proper hepatic function in vitro has not been achieved. Furthermore, frequently harvesting hepatocytes from living donors for use in culture is highly invasive and simply not feasible. We have previously reported that canine bone marrow-derived mesenchymal stem cells (cBMSCs) can be effectively converted into induced hepatocyte-like cells (iHep cells); however, these cells had reduced function in comparison to mature hepatocytes. In recent studies, spheroid formation-based three-dimensional (3D) culture has been noted to greatly increase hepatocyte function; nevertheless, no reports have described the use of this technology for culturing canine hepatocytes. Therefore, in this study, we aimed to establish a 3D spheroid culture using converted canine iHep cells to investigate their function as hepatocytes. METHODS: The iHep cells were prepared by introducing two genes, namely, the Forkhead box A1 (Foxa1) and hepatocyte nuclear factor 4 homeobox alpha (Hnf4α), into cBMSCs seeded onto an ultra-low attachment microplate to induce spheroid formation. Thereafter, the hepatic functions of these spheroids were evaluated using immunocytochemistry, as well as qualitative and quantitative PCR. RESULTS: Notably, albumin was observed in the iHep spheroids and the expression of hepatic genes, such as albumin and drug metabolism CYP genes, could also be detected. Another interesting finding was evident upon further comparing the quantified albumin gene and CYP2E1 gene expressions in the two-dimensional and three-dimensional culture systems; notably, a 100- to 200-fold increase in gene expression levels was observed in the three-dimensional spheroids when compared to those in conventional monolayers. CONCLUSIONS: Upon incorporating three-dimensional technology, we managed to achieve iHep spheroids that are closer in gene expression to living liver tissue compared to conventional monolayer cultures. Thus, we are one step closer to creating a sustainable in vitro hepatocyte model. Furthermore, we believe that this system is capable of maintaining the stable drug metabolizing capacity of canine hepatocytes in vitro, which might be useful in improving current drug assessment studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...