Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(38): 25965-25978, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37646123

RESUMEN

Transference numbers play an important role in understanding the dynamics of electrolytes and assessing their performance in batteries. Unfortunately, these transport parameters are difficult to measure in highly concentrated liquid electrolytes such as ionic liquids. Also, the interpretation of their sign and magnitude has provoked an ongoing debate in the literature further complicated by the use of different languages. In this work, we highlight the role of the reference frame for the interpretation of transport parameters using our novel thermodynamically consistent theory for highly correlated electrolytes. We argue that local volume conservation is a key principle in incompressible liquid electrolytes and use the volume-based drift velocity as a reference. We apply our general framework to electrophoretic NMR experiments. For ionic liquid based electrolytes, we find that the results of the eNMR measurements can be best described using this volume-based description. This highlights the limitations of the widely used center-of-mass reference frame which for example forms the basis for molecular dynamics simulations - a standard tool for the theoretical calculation of transport parameters. It shows that the assumption of local momentum conservation is incorrect in those systems on the macroscopic scale.

2.
J Phys Chem Lett ; 13(37): 8761-8767, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36102654

RESUMEN

While ion transport processes in concentrated electrolytes, e.g., based on ionic liquids (IL), are a subject of intense research, the role of conservation laws and reference frames is still a matter of debate. Employing electrophoretic NMR, we show that momentum conservation, a typical prerequisite in molecular dynamics (MD) simulations, is not governing ion transport. Involving density measurements to determine molar volumes of distinct ion species, we propose that conservation of local molar species volumes is the governing constraint for ion transport. The experimentally quantified net volume flux is found to be zero, implying a nonzero local momentum flux, as tested in pure ILs and IL-based electrolytes for a broad variety of concentrations and chemical compositions. This constraint is consistent with incompressibility, but not with a local application of momentum conservation. The constraint affects the calculation of transference numbers as well as comparisons of MD results to experimental findings.

3.
Phys Chem Chem Phys ; 21(46): 25635-25648, 2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31720638

RESUMEN

In this work a newly parametrised Coulomb plus Buckingham potential formulation for cubic ZrO2, Y2O3 and yttrium-stabilised zirconia (YSZ) is presented. The density and pair distributions obtained for neat ZrO2 and Y2O3 under ambient conditions are in excellent agreement with experimental data, while the vibrational power spectra are highly similar compared to those obtained via ab initio molecular dynamics simulations at the PBEsol level. In addition, it is shown that the use of effective partial charges has several advantages compared to interaction potentials employing the oxidation states in the evaluation of the coulombic interactions: (i) the diffusion coefficient and the associated activation energy of oxygen ions evaluated for YSZn (n = 4 to 12) display the best agreement with experimental data; (ii) no unphysical reorganisation of the interface and the bulk are observed in simulations of the (110) and (111) surfaces of cubic ZrO2 and Y2O3, while due to the strong coulombic contributions in the case of the tested full-charge models a pronounced restructuring of the interface and the bulk is observed in the ZrO2 case, and (iii) the use of effective partial charges ensures compatibility with existing solvent models and force-fields for the treatment of molecular compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...