Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 353(6304)2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27609897

RESUMEN

We directly measured at the single-molecule level the forces and lifetimes of DNA base-pair stacking interactions for all stack sequence combinations. Our experimental approach combined dual-beam optical tweezers with DNA origami components to allow positioning of blunt-end DNA helices so that the weak stacking force could be isolated. Base-pair stack arrays that lacked a covalent backbone connection spontaneously dissociated at average rates ranging from 0.02 to 500 per second, depending on the sequence combination and stack array size. Forces in the range from 2 to 8 piconewtons that act along the helical direction only mildly accelerated the stochastic unstacking process. The free-energy increments per stack that we estimate from the measured forward and backward kinetic rates ranged from -0.8 to -3.4 kilocalories per mole, depending on the sequence combination. Our data contributes to understanding the mechanics of DNA processing in biology, and it is helpful for designing the kinetics of DNA-based nanoscale devices according to user specifications.


Asunto(s)
Emparejamiento Base , ADN/química , Conformación de Ácido Nucleico , Enlace de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Nanotecnología , Pinzas Ópticas
2.
Angew Chem Int Ed Engl ; 52(30): 7766-71, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23794413

RESUMEN

Bridging the gap: Rigid DNA linkers (blue, see picture) between microspheres (green) for high-resolution single-molecule mechanical experiments were constructed using DNA origami. The resulting DNA helical bundles greatly reduce the noise generated in studies of conformation changes using optical tweezers and were applied to study small DNA secondary structures.


Asunto(s)
ADN/química , Microesferas , Nanoestructuras/química , Nanotecnología , Pinzas Ópticas , Simulación por Computador , Reactivos de Enlaces Cruzados/farmacología , Microscopía de Fuerza Atómica , Método de Montecarlo
3.
Nucleic Acids Res ; 40(7): 2862-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22156372

RESUMEN

DNA nanotechnology enables the programmed synthesis of intricate nanometer-scale structures for diverse applications in materials and biological science. Precise control over the 3D solution shape and mechanical flexibility of target designs is important to achieve desired functionality. Because experimental validation of designed nanostructures is time-consuming and cost-intensive, predictive physical models of nanostructure shape and flexibility have the capacity to enhance dramatically the design process. Here, we significantly extend and experimentally validate a computational modeling framework for DNA origami previously presented as CanDo [Castro,C.E., Kilchherr,F., Kim,D.-N., Shiao,E.L., Wauer,T., Wortmann,P., Bathe,M., Dietz,H. (2011) A primer to scaffolded DNA origami. Nat. Meth., 8, 221-229.]. 3D solution shape and flexibility are predicted from basepair connectivity maps now accounting for nicks in the DNA double helix, entropic elasticity of single-stranded DNA, and distant crossovers required to model wireframe structures, in addition to previous modeling (Castro,C.E., et al.) that accounted only for the canonical twist, bend and stretch stiffness of double-helical DNA domains. Systematic experimental validation of nanostructure flexibility mediated by internal crossover density probed using a 32-helix DNA bundle demonstrates for the first time that our model not only predicts the 3D solution shape of complex DNA nanostructures but also their mechanical flexibility. Thus, our model represents an important advance in the quantitative understanding of DNA-based nanostructure shape and flexibility, and we anticipate that this model will increase significantly the number and variety of synthetic nanostructures designed using nucleic acids.


Asunto(s)
Biología Computacional/métodos , ADN/química , Nanoestructuras/química , ADN/ultraestructura , Nanoestructuras/ultraestructura , Conformación de Ácido Nucleico
4.
Nat Methods ; 8(3): 221-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21358626

RESUMEN

Molecular self-assembly with scaffolded DNA origami enables building custom-shaped nanometer-scale objects with molecular weights in the megadalton regime. Here we provide a practical guide for design and assembly of scaffolded DNA origami objects. We also introduce a computational tool for predicting the structure of DNA origami objects and provide information on the conditions under which DNA origami objects can be expected to maintain their structure.


Asunto(s)
Diseño Asistido por Computadora , Cartilla de ADN/química , ADN/química , Nanopartículas/química , ADN/ultraestructura , Nanopartículas/ultraestructura , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...