Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
ACS Cent Sci ; 9(5): 915-926, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37252349

RESUMEN

Targeted protein degradation with molecular glue degraders has arisen as a powerful therapeutic modality for eliminating classically undruggable disease-causing proteins through proteasome-mediated degradation. However, we currently lack rational chemical design principles for converting protein-targeting ligands into molecular glue degraders. To overcome this challenge, we sought to identify a transposable chemical handle that would convert protein-targeting ligands into molecular degraders of their corresponding targets. Using the CDK4/6 inhibitor ribociclib as a prototype, we identified a covalent handle that, when appended to the exit vector of ribociclib, induced the proteasome-mediated degradation of CDK4 in cancer cells. Further modification of our initial covalent scaffold led to an improved CDK4 degrader with the development of a but-2-ene-1,4-dione ("fumarate") handle that showed improved interactions with RNF126. Subsequent chemoproteomic profiling revealed interactions of the CDK4 degrader and the optimized fumarate handle with RNF126 as well as additional RING-family E3 ligases. We then transplanted this covalent handle onto a diverse set of protein-targeting ligands to induce the degradation of BRD4, BCR-ABL and c-ABL, PDE5, AR and AR-V7, BTK, LRRK2, HDAC1/3, and SMARCA2/4. Our study undercovers a design strategy for converting protein-targeting ligands into covalent molecular glue degraders.

3.
J Clin Invest ; 125(9): 3657-66, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26301811

RESUMEN

Juvenile ciliopathy syndromes that are associated with renal cysts and premature renal failure are commonly the result of mutations in the gene encoding centrosomal protein CEP290. In addition to centrosomes and the transition zone at the base of the primary cilium, CEP290 also localizes to the nucleus; however, the nuclear function of CEP290 is unknown. Here, we demonstrate that reduction of cellular CEP290 in primary human and mouse kidney cells as well as in zebrafish embryos leads to enhanced DNA damage signaling and accumulation of DNA breaks ex vivo and in vivo. Compared with those from WT mice, primary kidney cells from Cep290-deficient mice exhibited supernumerary centrioles, decreased replication fork velocity, fork asymmetry, and increased levels of cyclin-dependent kinases (CDKs). Treatment of Cep290-deficient cells with CDK inhibitors rescued DNA damage and centriole number. Moreover, the loss of primary cilia that results from CEP290 dysfunction was rescued in 3D cell culture spheroids of primary murine kidney cells after exposure to CDK inhibitors. Together, our results provide a link between CEP290 and DNA replication stress and suggest CDK inhibition as a potential treatment strategy for a wide range of ciliopathy syndromes.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Cerebelo/anomalías , Daño del ADN , Riñón/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Retina/anomalías , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Animales , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular , Línea Celular , Centriolos/genética , Centriolos/metabolismo , Centriolos/patología , Cerebelo/metabolismo , Cerebelo/patología , Proteínas del Citoesqueleto , Replicación del ADN , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/patología , Humanos , Riñón/patología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Retina/metabolismo , Retina/patología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Mol Cell ; 58(6): 1090-100, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26051180

RESUMEN

Stalled replication forks are a critical problem for the cell because they can lead to complex genome rearrangements that underlie cell death and disease. Processes such as DNA damage tolerance and replication fork reversal protect stalled forks from these events. A central mediator of these DNA damage responses in humans is the Rad5-related DNA translocase, HLTF. Here, we present biochemical and structural evidence that the HIRAN domain, an ancient and conserved domain found in HLTF and other DNA processing proteins, is a modified oligonucleotide/oligosaccharide (OB) fold that binds to 3' ssDNA ends. We demonstrate that the HIRAN domain promotes HLTF-dependent fork reversal in vitro through its interaction with 3' ssDNA ends found at forks. Finally, we show that HLTF restrains replication fork progression in cells in a HIRAN-dependent manner. These findings establish a mechanism of HLTF-mediated fork reversal and provide insight into the requirement for distinct fork remodeling activities in the cell.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Western Blotting , Línea Celular Tumoral , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/química , Factores de Transcripción/genética
5.
Mol Cell ; 51(4): 423-39, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973373

RESUMEN

Renal ciliopathies are a leading cause of kidney failure, but their exact etiology is poorly understood. NEK8/NPHP9 is a ciliary kinase associated with two renal ciliopathies in humans and mice, nephronophthisis (NPHP) and polycystic kidney disease. Here, we identify NEK8 as a key effector of the ATR-mediated replication stress response. Cells lacking NEK8 form spontaneous DNA double-strand breaks (DSBs) that further accumulate when replication forks stall, and they exhibit reduced fork rates, unscheduled origin firing, and increased replication fork collapse. NEK8 suppresses DSB formation by limiting cyclin A-associated CDK activity. Strikingly, a mutation in NEK8 that is associated with renal ciliopathies affects its genome maintenance functions. Moreover, kidneys of NEK8 mutant mice accumulate DNA damage, and loss of NEK8 or replication stress similarly disrupts renal cell architecture in a 3D-culture system. Thus, NEK8 is a critical component of the DNA damage response that links replication stress with cystic kidney disorders.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cilios/patología , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN/genética , Enfermedades Renales Poliquísticas/patología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Técnicas de Cultivo de Célula , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Cilios/metabolismo , Quinasas Ciclina-Dependientes/genética , Daño del ADN/genética , Inestabilidad Genómica , Humanos , Ratones , Mutación/genética , Quinasas Relacionadas con NIMA , Fosforilación , Enfermedades Renales Poliquísticas/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Estrés Fisiológico
7.
Curr Genet ; 56(6): 479-93, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20697716

RESUMEN

The Target of Rapamycin complex 1 (TORC1) is a central regulator of eukaryotic cell growth that is inhibited by the drug rapamycin. In the budding yeast Saccharomyces cerevisiae, translational defects associated with TORC1 inactivation inhibit cell cycle progression at an early stage in G1, but little is known about the possible roles for TORC1 later in the cell cycle. We investigated the rapamycin-hypersensitivity phenotype of cells lacking the S phase cyclin Clb5 (clb5Δ) as a basis for uncovering novel connections between TORC1 and the cell cycle regulatory machinery. Dosage suppression experiments suggested that the clb5Δ rapamycin hypersensitivity reflects a unique Clb5-associated cyclin-dependent kinase (CDK) function that cannot be performed by mitotic cyclins and that also involves motor proteins, particularly the kinesin-like protein Kip3. Synchronized cell experiments revealed rapamycin-induced defects in pre-anaphase spindle assembly and S phase progression that were more severe in clb5Δ than in wild-type cells but no apparent activation of Rad53-dependent checkpoint pathways. Some rapamycin-treated cells had aberrant spindle morphologies, but rapamycin did not cause gross defects in the microtubule cytoskeleton. We propose a model in which TORC1 and Clb5/CDK act coordinately to promote both spindle assembly via a pathway involving Kip3 and S phase progression.


Asunto(s)
Ciclina B/fisiología , Replicación del ADN/genética , Complejos Multiproteicos/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae , Huso Acromático/metabolismo , Serina-Treonina Quinasas TOR/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Ciclina B/genética , Ciclina B/metabolismo , Replicación del ADN/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Cinesinas/genética , Cinesinas/metabolismo , Cinesinas/fisiología , Complejos Multiproteicos/metabolismo , Organismos Modificados Genéticamente , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Fase S/efectos de los fármacos , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Huso Acromático/efectos de los fármacos , Huso Acromático/genética , Serina-Treonina Quinasas TOR/metabolismo
8.
Mol Cell Biol ; 30(1): 160-71, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19858292

RESUMEN

A stable genome is critical to cell viability and proliferation. During DNA replication, the S-phase checkpoint pathway responds to replication stress. In budding yeast, the chromatin-bound F-box protein Dia2 is required to maintain genomic stability and may help replication complexes overcome sites of damaged DNA and natural fragile regions. SCF (Skp1/Cul1/F-box protein) complexes are modular ubiquitin ligases. We show here that Dia2 is itself targeted for ubiquitin-mediated proteolysis and that activation of the S-phase checkpoint pathway inhibits Dia2 protein degradation. S-phase checkpoint mutants fail to stabilize Dia2 in response to replication stress. Deletion of DIA2 from these checkpoint mutants exacerbates their sensitivity to hydroxyurea, suggesting that stabilization of Dia2 contributes to the replication stress response. Unlike the case for other F-box proteins, deletion of the F-box domain in Dia2 does not stabilize the protein. Rather, an N-terminal domain that is also required for nuclear localization is necessary for degradation. When a strong nuclear localization signal (NLS) is added to dia2 mutants lacking this domain, the Dia2 protein is both stable and nuclear. Together, our results suggest that Dia2 protein turnover does not involve an autocatalytic mechanism and that Dia2 proteolysis is inhibited by activation of the replication stress response.


Asunto(s)
Proteínas F-Box/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Proteínas Cullin/metabolismo , Replicación del ADN , ADN de Hongos/genética , Proteínas F-Box/genética , Fase G1 , Hidroxiurea/farmacología , Mutación , Señales de Localización Nuclear , Estabilidad Proteica , Proteínas Ligasas SKP Cullina F-box/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
9.
Mol Cell Biol ; 27(13): 4674-84, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17452447

RESUMEN

The Saccharomyces cerevisiae F-box protein Dia2 is important for DNA replication and genomic stability. Using an affinity approach, we identified Yra1, a transcription-coupled mRNA export protein, as a Dia2 interaction partner. We find that yra1 mutants are sensitive to DIA2 expression levels. Like Dia2, Yra1 associates with chromatin and binds replication origins, suggesting that they may function together in DNA replication. Consistent with this idea, Yra1 and Dia2 coimmunoprecipitate with Hys2, a subunit of DNA polymerase delta. The C terminus of Yra1 is required to interact with Dia2. A yra1 mutant that lacks this domain is temperature sensitive yet has no apparent defect in RNA export. Remarkably, this mutant also fails to enter S phase at the nonpermissive temperature. Significantly, other mutants in transcription-coupled export do not exhibit S phase entry defects or sensitivity to DIA2 expression levels. Together, these results indicate that Yra1 has a role in DNA replication distinct from its role in mRNA export. Furthermore, Dia2 binding to replication origins is significantly reduced when association with Yra1 is compromised, suggesting that one aspect of the role of Yra1 in DNA replication may involve recruiting Dia2 to chromatin.


Asunto(s)
Proteínas F-Box/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Origen de Réplica , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , ADN Polimerasa III , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación/genética , Unión Proteica
10.
Mol Biol Cell ; 17(4): 1540-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16421250

RESUMEN

Ubiquitin-mediated proteolysis plays a key role in many pathways inside the cell and is particularly important in regulating cell cycle transitions. SCF (Skp1/Cul1/F-box protein) complexes are modular ubiquitin ligases whose specificity is determined by a substrate-binding F-box protein. Dia2 is a Saccharomyces cerevisiae F-box protein previously described to play a role in invasive growth and pheromone response pathways. We find that deletion of DIA2 renders cells cold-sensitive and subject to defects in cell cycle progression, including premature S-phase entry. Consistent with a role in regulating DNA replication, the Dia2 protein binds replication origins. Furthermore, the dia2 mutant accumulates DNA damage in both S and G2/M phases of the cell cycle. These defects are likely a result of the absence of SCF(Dia2) activity, as a Dia2 DeltaF-box mutant shows similar phenotypes. Interestingly, prolonging G1-phase in dia2 cells prevents the accumulation of DNA damage in S-phase. We propose that Dia2 is an origin-binding protein that plays a role in regulating DNA replication.


Asunto(s)
Replicación del ADN , Proteínas F-Box/metabolismo , Origen de Réplica/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Daño del ADN/genética , ADN de Hongos/metabolismo , Proteínas F-Box/genética , Eliminación de Gen , Mutación , Fase S/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA