RESUMEN
BACKGROUND: The amounts of circulating cell-free DNA (cfDNA) and circulating-tumor DNA (ctDNA) present in peripheral blood liquid biopsies can vary due to preanalytic/analytic variables. In this study, we examined the impact of patient age, sex, stage, and tumor type on cfDNA yield, ctDNA fraction, and estimated ctDNA quantity from a large cohort of clinical liquid biopsy samples. METHODS: We performed a retrospective analysis of 12 139 consecutive samples received for liquid biopsy (FoundationOne® Liquid) clinical testing. RESULTS: Significant differences in both cfDNA yield and estimated ctDNA quantity were observed based on the underlying tumor type that initiated the liquid biopsy analysis and the stage of the patient (P < 0.001). In addition, significant differences in ctDNA quantity were present based in both the patient age and sex (P < 0.001). Importantly, we saw a significantly higher success rate of issuing a clinically useful report in patients with higher levels of cfDNA yield and ctDNA quantity (P < 0.001). CONCLUSIONS: In this study, we show that ctDNA quantity varied significantly based on patient age, sex, stage, and tumor type, which could offer an explanation as to why certain liquid biopsy specimens are more likely to fail sequencing or provide clinically meaningful results. In addition, this could affect future clinical decisions on the blood sample volumes required to allow successful liquid biopsy testing.
Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias , Biomarcadores de Tumor/genética , Humanos , Biopsia Líquida/métodos , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , Estudios RetrospectivosRESUMEN
BACKGROUND: This study assessed the contrasting genomic profiles from the primary tumors (PTs), metastatic (MET) sites, and circulating tumor DNA (ctDNA) of patients with prostate cancer (PC). METHODS: A total of 1294 PC tissue specimens and 2462 ctDNA specimens underwent hybrid capture-based comprehensive genomic profiling (CGP). Specimens included tissue from PTs; MET biopsies from bone, liver (LIV), lung (LU), brain (BN), lymph node, and soft tissue sites; and ctDNA. RESULTS: Differences in alteration frequencies between PT, MET, and ctDNA specimens for selected genes were observed. TMPRSS2:ERG fusion frequencies were similar between PTs and MET sites (35% vs 33%) but varied among MET sites. Genomic alterations (GAs) in AR were lowest in PTs (2%) and highest in MET sites (from 24% in LU to 50% in LIV). BN had the highest genomic alterations/tumor (8) and enrichment for PTEN GAs. The BRCA2 GA frequency varied from 0% in BN to 15% in LIV. ERBB2 amplification was increased in MET sites in comparison with PTs. RB1 GAs were increased in LIV. Biomarkers potentially associated with an anti-PD(L)1 response included CDK12 GAs (16% in LU) and a microsatellite instability-high status (29% in BN). Analyses of ctDNA featured a broad spectrum of GAs similar to those detected across MET sites. CONCLUSIONS: CGP of PTs, MET sites, and ctDNA in PC exhibited differences most likely associated with tumor progression, clonal evolution, and exposure to systemic therapies; ctDNA can also capture a broad range of potential therapeutic opportunities for patients with PC.
Asunto(s)
ADN Tumoral Circulante , Neoplasias de la Próstata , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biopsia Líquida , Masculino , Inestabilidad de Microsatélites , Mutación , Neoplasias de la Próstata/genéticaRESUMEN
Comprehensive genomic profiling (CGP) and immunohistochemistry (IHC) are important biomarker tools used for patients with non-small cell lung cancer (NSCLC) given the expanding number of standard-of-care therapies that require companion diagnostic testing. We examined 9450 NSCLC real-world patient samples that underwent both CGP and programmed death-ligand 1 (PD-L1) IHC to understand the biomarker landscape in this patient cohort. By assessing National Comprehensive Cancer Network (NCCN)-recommended biomarkers including genomic alterations, tumor mutational burden (≥10 mutations/Mb cut-off), and PD-L1 expression (Tumor Proportion Score (TPS) ≥ 50% cut-off), we show that CGP + PD-L1 IHC yielded potentially actionable results for 70.5% of the 9,450 patients with NSCLC. Among the remaining 29.5% (2,789/9,450) of patients, 86.7% (2,419/2,789) were potentially eligible for another biomarker-associated therapy and/or clinical trial based on their genomic profile. In addition, in the PD-L1TPS≥50% disease subset, BRAF mutations, MET mutations, MET amplifications, and KRAS mutations were significantly enriched; and in the PD-L1TPS<50%, EGFR mutations, ERBB2 mutations, STK11 mutations, and KEAP1 mutations were enriched. These findings highlight the improved clinical utility of combining CGP with IHC to expand the biomarker-guided therapeutic options available for patients with NSCLC, relative to single biomarker testing alone.
Asunto(s)
Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Femenino , Genómica , Humanos , Inmunohistoquímica , Inmunoterapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Masculino , MutaciónRESUMEN
BACKGROUND: Histiocytic and dendritic cell neoplasms are a diverse group of tumors arising from monocytic or dendritic cell lineage. Whereas the genomic features for Langerhans cell histiocytosis and Erdheim-Chester disease have been well described, other less common and often aggressive tumors in this broad category remain poorly characterized, and comparison studies across the World Health Organization diagnostic categories are lacking. METHODS: Tumor samples from a total of 102 patient cases within four major subtypes of malignant histiocytic and dendritic cell neoplasms, including 44 follicular dendritic cell sarcomas (FDCSs), 41 histiocytic sarcomas (HSs), 7 interdigitating dendritic cell sarcomas (IDCSs), and 10 Langerhans cell sarcomas (LCSs), underwent hybridization capture with analysis of up to 406 cancer-related genes. RESULTS: Among the entire cohort of 102 patients, CDKN2A mutations were most frequent across subtypes and made up 32% of cases, followed by TP53 mutations (22%). Mitogen-activated protein kinase (MAPK) pathway mutations were present and enriched among the malignant histiocytosis (M) group (HS, IDCS, and LCS) but absent in FDCS (72% vs. 0%; p < .0001). In contrast, NF-κB pathway mutations were frequent in FDCSs but rare in M group histiocytoses (61% vs. 12%; p < .0001). Tumor mutational burden was significantly higher in M group histiocytoses as compared with FDCSs (median 4.0/Mb vs. 2.4/Mb; p = .012). We also describe a pediatric patient with recurrent secondary histiocytic sarcoma treated with targeted therapy and interrogated by molecular analysis to identify mechanisms of therapeutic resistance. CONCLUSION: A total of 42 patient tumors (41%) harbored pathogenic mutations that were potentially targetable by approved and/or investigative therapies. Our findings highlight the potential value of molecular testing to enable precise tumor classification, identify candidate oncogenic drivers, and define personalized therapeutic options for patients with these aggressive tumors. IMPLICATIONS FOR PRACTICE: This study presents comprehensive genomic profiling results on 102 patient cases within four major subtypes of malignant histiocytic and dendritic cell neoplasms, including 44 follicular dendritic cell sarcomas (FDCSs), 41 histiocytic sarcomas (HSs), 7 interdigitating dendritic cell sarcomas (IDCSs), and 10 Langerhans cell sarcomas (LCSs). MAPK pathway mutations were present and enriched among the malignant histiocytosis (M) group (HS, IDCS, and LCS) but absent in FDCSs. In contrast, NF-κB pathway mutations were frequent in FDCSs but rare in M group histiocytosis. A total of 42 patient tumors (41%) harbored pathogenic mutations that were potentially targetable by approved and/or investigative therapies.
Asunto(s)
Sarcoma de Células Dendríticas Foliculares , Trasplante de Células Madre Hematopoyéticas , Sarcoma , Niño , Sarcoma de Células Dendríticas Foliculares/genética , Células Dendríticas , Genómica , Humanos , Mutación , Recurrencia Local de Neoplasia , Sarcoma/genéticaRESUMEN
INTRODUCTION AND OBJECTIVE: Unlike clear cell renal cell carcinoma (CCRCC), collecting duct carcinoma (CDC) and renal medullary carcinoma (RMC) are rare tumors that progress rapidly and appear resistant to current systemic therapies. We queried comprehensive genomic profiling to uncover opportunities for targeted therapy and immunotherapy. MATERIAL AND METHODS: DNA was extracted from 40 microns of formalin-fixed, paraffin-embedded specimen from relapsed, mCDC (nâ¯=â¯46), mRMC (nâ¯=â¯24), and refractory and metastatic (m) mCCRCC (nâ¯=â¯626). Comprehensive genomic profiling was performed, and Tumor mutational burden (TMB) and microsatellite instability (MSI) were calculated. We analyzed all classes of genomic alterations. RESULTS: mCDC had 1.7 versus 2.7 genomic alterations/tumor in mCCRCC (â¯=â¯0.04). Mutations in VHL (P < 0.0001) and TSC1 (Pâ¯=â¯0.04) were more frequent in mCCRCC. SMARCB1 (P < 0.0001), NF2 (Pâ¯=â¯0.0007), RB1 (Pâ¯=â¯0.02) and RET (Pâ¯=â¯0.0003) alterations were more frequent in mCDC versus mCCRCC. No VHL alterations in mRMC and mCDC were identified. SMARCB1 genomic alterations were significantly more frequent in mRMC than mCDC (Pâ¯=â¯0.0002), but were the most common alterations in both subtypes. Mutations to EGFR, RET, NF2, and TSC2 were more frequently identified in mCDC versus mRMC. The median TMB and MSI-High status was low with <1% of mCCRC, mCDC, and mRMC having ≥ 20 mut/Mb. CONCLUSION: Genomic alteration patterns in mCDC and mRMC differ significantly from mCCRCC. Targeted therapies for mCDC and mRMC appear limited with rare opportunities to target alterations in receptor tyrosine kinase and MTOR pathways. Similarly, TMB and absence of MSI-High status in mCDC and mRMC suggest resistance to immunotherapies.
Asunto(s)
Carcinoma Medular/genética , Carcinoma de Células Renales/genética , Perfilación de la Expresión Génica , Neoplasias Renales/genética , Adulto , Carcinoma Medular/secundario , Carcinoma de Células Renales/secundario , Femenino , Genómica , Humanos , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , MutaciónRESUMEN
PD-L1 immunohistochemistry (IHC) currently has the most Food and Drug Administration (FDA) approvals as a companion diagnostic (CDx) for immunotherapies in specific tumor types; however, multiple other immunotherapy biomarkers exist. We performed this study to examine and report the prevalence of PD-L1 expression in a wide variety of tumor types and examine its relationship to microsatellite instability (MSI), tumor mutational burden (TMB), and CD274 (PD-L1) gene amplification. We performed a retrospective analysis of all cases in which both PD-L1 IHC (using the DAKO 22C3 IHC assay with either tumor proportion score (TPS) or combined positive score (CPS); or the VENTANA SP142 assay with infiltrating immune cell score (IC)) and comprehensive genomic profiling (CGP) were tested at Foundation Medicine between January 2016 and November 2019. Of note, PD-L1 positivity is defined per the CDx indication and tumor proportion score (TPS ≥ 1) for indications without a CDx claim; and TMB positivity is defined as ≥10 mutations/Mb. A total of 48,782 cases were tested for PD-L1 IHC and CGP. Immune cell expression of PD-L1 was more frequently identified than tumor cell expression of PD-L1. We saw a high correlation between PD-L1 expression and CD274 gene amplification (p < 0.0001), MSI and TMB (p < 0.0001), and PD-L1 and TMB (p < 0.0001). In addition, the combination of PD-L1 and TMB identified four unique disease subsets PD-L1-/TMB-, PD-L1+/TMB-, PD-L1-/TMB+, and PD-L1+/TMB+ with varying prevalence dependent on tumor type. Lastly, 50.3% (24527/48782) of the overall cohort was positive for at least one of the CDx or exploratory biomarkers described above. This is the largest pan-cancer analysis of relevant biomarkers associated with response to checkpoint inhibitors to date, including more than 48,000 cases. Additional clinical trials with treatment outcome data in individual tumor types are needed to determine whether the double positive PD-L1+/TMB+ disease subset would respond best to immunotherapy.
Asunto(s)
Antígeno B7-H1/análisis , Biomarcadores de Tumor/análisis , Neoplasias/genética , Neoplasias/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Amplificación de Genes , Humanos , Inmunohistoquímica , Inestabilidad de Microsatélites , Mutación , Estudios RetrospectivosRESUMEN
PURPOSE: Vulvar squamous cell carcinoma (vSCC) encompasses two predominant variants: one associated with detectable high-risk strains of human papillomavirus (hrHPV) and a second form often occurring in the context of chronic dermatitis in postmenopausal women. Genomic assessment of a large-scale cohort of patients with aggressive vSCC may identify distinct mutational signatures. MATERIALS AND METHODS: Tumor samples from a total of 280 patients with vSCC underwent hybridization capture with analysis of up to 406 cancer-related genes. Human papillomavirus (HPV) sequences were detected by de novo assembly of nonhuman sequencing reads and aligned to the RefSeq database. Immunohistochemistry for programmed death-ligand 1 (PD-L1) was assessed. RESULTS: One hundred two of 280 vSCCs (36%) contained hrHPV sequences, predominantly HPV 16 (88%). The HPV-positive (HPV+) group was significantly younger (median age, 59 v 64 years; P = .001). Compared with HPV-negative (HPV-) vSCCs, HPV+ tumors showed more frequent pathogenic alterations in PIK3CA (31% v 16%; P = .004), PTEN (14% v 2%; P < .0001), EP300 (14% v 1%; P < .0001), STK11 (14% v 1%; P < .0001), AR (5% v 0%; P = .006), and FBXW7 (10% v 3%; P = .03). In contrast, HPV- vSCCs showed more alterations in TP53 (83% v 6%; P < .0001), TERTp (71% v 9%; P < .0001), CDKN2A (55% v 2%; P < .0001), CCND1 amplification (22% v 2%; P < .0001), FAT1 (25% v 4%; P < .0001), NOTCH1 (19% v 6%; P = .002), and EGFR amplification (11% v 0%; P < .0001), as well as a higher rate of 9p24.1 (PDL1/PDL2) amplification (5% v 1%) and PD-L1 immunohistochemistry high-positive tumor staining (33% v 9%; P = .04). CONCLUSION: Comprehensive molecular profiles of vSCC vary considerably with hrHPV status and may inform patient selection into clinical trials. Sixty-one percent of HPV+ vSCCs had a pathogenic alteration in the PI3K/mTOR pathway, whereas HPV- vSCCs showed alterations in TP53, TERTp, CDKN2A, CCND1, and EGFR, and biomarkers associated with responsiveness to immunotherapy.
RESUMEN
BACKGROUND: We examined the current biomarker landscape in breast cancer when programmed death-ligand 1 (PD-L1) testing is integrated with comprehensive genomic profiling (CGP). MATERIAL AND METHODS: We analyzed data from samples of 312 consecutive patients with breast carcinoma tested with both CGP and PD-L1 (SP142) immunohistochemistry (IHC) during routine clinical care. These samples were stratified into hormone receptor positive (HR+)/human epidermal growth factor receptor negative (HER2-; n = 159), HER2-positive (n = 32), and triple-negative breast cancer (TNBC) cohorts (n = 121). RESULTS: We found that in the TNBC cohort, 43% (52/121) were immunocyte PD-L1-positive, and in the HR+/HER2- cohort, 30% (48/159) had PIK3CA companion diagnostics mutations, and hence were potentially eligible for atezolizumab plus nab-paclitaxel or alpelisib plus fulvestrant, respectively. Of the remaining 212 patients, 10.4% (22/212) had a BRCA1/2 mutation, which, if confirmed by germline testing, would allow olaparib plus talazoparib therapy. Of the remaining 190 patients, 169 (88.9%) were positive for another therapy-associated marker or a marker that would potentially qualify the patient for a clinical trial. In addition, we examined the relationship between immunocyte PD-L1 positivity and different tumor mutation burden (TMB) cutoffs and found that when a TMB cutoff of ≥9 mutations per Mb was applied (cutoff determined based on prior publication), 11.6% (14/121) patients were TMB ≥9 mutations/Mb and of these, TMB ≥9 mutations per Mb, 71.4% (10/14) were also positive for PD-L1 IHC. CONCLUSION: Our integrated PD-L1 and CGP methodology identified 32% of the tested patients as potentially eligible for at least one of the two new Food and Drug Administration approved therapies, atezolizumab or alpelisib, and an additional 61.2% (191/312) had other biomarker-guided potential therapeutic options. IMPLICATIONS FOR PRACTICE: This integrated programmed death-ligand 1 immunohistochemistry and comprehensive genomic profiling methodology identified 32% of the tested patients as eligible for at least one of the two new Food and Drug Administration-approved therapies, atezolizumab or alpelisib, and an additional 61.2% (191/312) had other biomarker-guided potential therapeutic options. These findings suggest new research opportunities to evaluate the predictive utility of other commonly seen PIK3CA mutations in hormone receptor-positive breast cancers and to standardize tumor mutation burden cutoffs to evaluate its potentially predictive role in triple-negative breast cancer.
Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama Triple Negativas , Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Genómica , Humanos , InmunohistoquímicaRESUMEN
PURPOSE: To compare the deoxyribonucleic acid (DNA) methylation signature of neuroendocrine tumors (NETs) by primary tumor site and inherited predisposition syndromes von Hippel-Lindau disease (VHL) and multiple endocrine neoplasia type 1 (MEN1). METHODS: Genome-wide DNA methylation (835 424 CpGs) of 96 NET samples. Principal components analysis (PCA) and unsupervised hierarchical clustering analyses were used to determine DNA methylome signatures. RESULTS: Hypomethylated CpGs were significantly more common in VHL-related versus sporadic and MEN1-related NETs (P < .001 for both comparisons). Small-intestinal NETs (SINETs) had the most differentially methylated CpGs, either hyper- or hypomethylated, followed by duodenal NETs (DNETs) and pancreatic NETs (PNETs, P < .001 for all comparisons). There was complete separation of SINETs on PCA, and 3 NETs of unknown origin clustered with the SINET samples. Sporadic, VHL-related, and MEN1-related PNETs formed distinct groups on PCA, and VHL clustered separately, showing pronounced DNA hypomethylation, while sporadic and MEN1-related NETs clustered together. MEN1-related PNETs, DNETs, and gastric NETs each had a distinct DNA methylome signature, with complete separation by PCA and unsupervised clustering. Finally, we identified 12 hypermethylated CpGs in the 1A promoter of the APC (adenomatous polyposis coli) gene, with higher methylation levels in MEN1-related NETs versus VHL-related and sporadic NETs (P < .001 for both comparisons). CONCLUSIONS: DNA CpG methylation profiles are unique in different primary NET types even when occurring in MEN1-related NETs. This tumor DNA methylome signature may be utilized for noninvasive molecular characterization of NETs, through DNA methylation profiling of biopsy samples or even circulating tumor DNA in the near future.
Asunto(s)
Metilación de ADN , Epigenoma , Neoplasia Endocrina Múltiple Tipo 1/genética , Tumores Neuroendocrinos/genética , Enfermedad de von Hippel-Lindau/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Adulto , Anciano , Biopsia , Ensayos Clínicos Fase II como Asunto , Islas de CpG/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Intestino Delgado/patología , Masculino , Persona de Mediana Edad , Neoplasia Endocrina Múltiple Tipo 1/patología , Tumores Neuroendocrinos/patología , Páncreas/patología , Regiones Promotoras Genéticas/genética , Estómago/patología , Enfermedad de von Hippel-Lindau/patologíaRESUMEN
Many sarcomas contain gene fusions that can be pathogenetic mechanisms and diagnostic markers. In this article we review selected fusion sarcomas and techniques for their detection. CIC-DUX4 fusion sarcoma is a round cell tumor now considered an entity separate from Ewing sarcoma with a more aggressive clinical course, occurrence in older age, and predilection to soft tissues. It is composed of larger cells than Ewing sarcoma and often has prominent necrosis. Nuclear DUX4 expression is a promising immuno histochemical marker. BCOR-CCNB3 fusion sarcoma is cyclin B3-positive, usually occurs in bone or soft tissue of children, and may mimic a poorly differentiated synovial sarcoma. EWSR1-NFATC2 sarcoma may present in bone or soft tissue. It is typically composed of small round cells in a trabecular pattern in a myxoid matrix resembling myoepithelioma. ACTB-GLI1 fusion sarcoma may mimic a skin adnexal carcinoma, showing focal expression of epithelial markers and S100 protein. NTRK-fusion sarcomas include, in addition to infantile fibrosarcoma with ETV6-NTRK3 fusion, LMNA-NTRK1 fusion sarcoma, a low-grade spindle cell sarcoma seen in peripheral soft tissues in children and young adults. Methods to detect gene fusions include next-generation sequencing panels, anchored multiplex polymerase chain reaction systems to detect partner for a known fusion gene, and comprehensive RNA sequencing to detect virtually all gene fusions. In situ hybridization testing using probes for both fusion partners can be used as an alternative confirmation technique, especially in the absence of satisfactory RNA yield. In addition, fusion protein-related and other immunohistochemical markers can have a high specificity for fusion sarcomas.
Asunto(s)
Fusión de Oncogenes/fisiología , Proteínas de Fusión Oncogénica/genética , Sarcoma/genética , Neoplasias de los Tejidos Blandos/genética , Humanos , Sarcoma/patología , Neoplasias de los Tejidos Blandos/patologíaRESUMEN
A subset (7% to 10%) of gastric gastrointestinal stromal tumors (GISTs) is notable for the immunohistochemical loss of succinate dehydrogenase (SDH) subunit B (SDHB), which signals the loss of function of the SDH complex consisting of mitochondrial inner membrane proteins. These SDH-deficient GISTs are known to be KIT/PDGFRA wild type, and most patients affected by this subset of GISTs are young. Some of these patients have germline mutations of SDH subunit genes SDHB, SDHC, or SDHD, known as Carney-Stratakis syndrome when combined with paraganglioma. More recently, germline mutations in SDH subunit A gene (SDHA) have also been reported in few patients with KIT/PDGFRA wild-type GISTs. In this study we immunohistochemically examined 127 SDHB-negative and 556 SDHB-positive gastric GISTs and 261 SDHB-positive intestinal GISTs for SDHA expression using a mouse monoclonal antibody 2E3 (Abcam). Cases with available DNA were tested for SDHA, SDHB, SDHC, and SDHD gene mutations using a hybridization-based custom capture next-generation sequencing assay. A total of 36 SDHA-negative GISTs (28%) were found among 127 SDHB-negative gastric GISTs. No SDHB-positive GIST was SDHA negative. Among 7 SDHA-negative tumors analyzed, there were 7 SDHA mutants, most germline. A second hit indicating biallelic inactivation of SDHA was present in 6 of those cases. These patients had no other SDH subunit gene mutations. Among the 25 SDHA-positive, SDHB-negative GISTs analyzed, we identified 3 SDHA mutations (1 germline), and 11 SDHB, SDHC, or SDHD mutations (mostly germline), and 11 patients with no SDH mutations. Compared with patients with SDHA-positive GISTs, those with SDHA-negative GISTs had an older median age (34 vs. 21 y), lower female to male ratio (1.8 vs. 3.1) but similar mitotic counts and median tumor sizes, with a slow course of disease in most cases, despite a slightly higher rate of liver metastases. SDHA-negative GISTs comprise approximately 30% of SDHB-negative/SDH-deficient GISTs, and SDHA loss generally correlates with SDHA mutations.
Asunto(s)
Complejo II de Transporte de Electrones/genética , Neoplasias Gastrointestinales/genética , Tumores del Estroma Gastrointestinal/genética , Mutación de Línea Germinal , Succinato Deshidrogenasa/deficiencia , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Análisis Mutacional de ADN , ADN de Neoplasias/análisis , Femenino , Neoplasias Gastrointestinales/enzimología , Tumores del Estroma Gastrointestinal/enzimología , Humanos , Inmunohistoquímica/métodos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Colorectal cancer (CRC) mostly develops from a variety of polyps following mainly three different molecular pathways: chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylation (CIMP). Polyps are classified histologically as conventional adenomas, hyperplastic polyps, sessile serrated adenomas/polyps (SSA/P) and traditional serrated adenomas (TSA). However, the association of these polyps with the different types of CRCs and the underlying genetic and epigenetic aberrations has yet to be resolved. In order to address this question we analyzed 140 tumors and 20 matched mucosae by array comparative genomic hybridization, by sequence analysis of the oncogenes BRAF, KRAS, PI3K3CA and by methylation arrays. MSI was tested indirectly by immunohistochemistry (IHC) and a loss of MLH1, MSH2, MSH6 or PMS2 was assigned as high microsatellite instability (MSI-H), while low microsatellite instability (MSI-L) was defined as MGMT IHC negativity only. CIN was detected in 78% of all MSI-H CRCs, most commonly as a gain of chromosome 8. Methylation data analyses allowed classification of samples into four groups and detected similar methylation profiles in SSA/P and MSI-H CRC. TSA also revealed aberrant methylation pattern, but clustered more heterogeneously and closer to microsatellite stable (MSS) CRCs. SSA/P, TSA and MSI-H CRCs had the highest degree of promotor methylation (CIMP pathway). Chromosomal instability, in contrast to the established doctrine, is a common phenomenon in MSI CRCs, yet to a lower extent and at later stages than in MSS CRCs. Methylation analyses suggest that SSA/P are precursors for MSI-H CRCs and follow the CIMP pathway.
Asunto(s)
Neoplasias Colorrectales/patología , Aberraciones Cromosómicas , Hibridación Genómica Comparativa , Metilación de ADN , Humanos , Inmunohistoquímica , Inestabilidad de Microsatélites , Oncogenes , Adhesión en ParafinaRESUMEN
The goal of this study was to characterize and classify pulmonary neuroendocrine tumors based on array comparative genomic hybridization (aCGH). Using aCGH, we performed karyotype analysis of 33 small cell lung cancer (SCLC) tumors, 13 SCLC cell lines, 19 bronchial carcinoids, and 9 gastrointestinal carcinoids. In contrast to the relatively conserved karyotypes of carcinoid tumors, the karyotypes of SCLC tumors and cell lines were highly aberrant. High copy number (CN) gains were detected in SCLC tumors and cell lines in cytogenetic bands encoding JAK2, FGFR1, and MYC family members. In some of those samples, the CN of these genes exceeded 100, suggesting that they could represent driver alterations and potential drug targets in subgroups of SCLC patients. In SCLC tumors, as well as bronchial carcinoids and carcinoids of gastrointestinal origin, recurrent CN alterations were observed in 203 genes, including the RB1 gene and 59 microRNAs of which 51 locate in the DLK1-DIO3 domain. These findings suggest the existence of partially shared CN alterations in these tumor types. In contrast, CN alterations of the TP53 gene and the MYC family members were predominantly observed in SCLC. Furthermore, we demonstrated that the aCGH profile of SCLC cell lines highly resembles that of clinical SCLC specimens. Finally, by analyzing potential drug targets, we provide a genomics-based rationale for targeting the AKT-mTOR and apoptosis pathways in SCLC.