Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 3(5): 860-873, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37377896

RESUMEN

Immune checkpoint blockade therapy, one of the most promising cancer immunotherapies, has shown remarkable clinical impact in multiple cancer types. Despite the recent success of immune checkpoint blockade therapy, however, the response rates in patients with cancer are limited (∼20%-40%). To improve the success of immune checkpoint blockade therapy, relevant preclinical animal models are essential for the development and testing of multiple combination approaches and strategies. Companion dogs naturally develop several types of cancer that in many respects resemble clinical cancer in human patients. Therefore, the canine studies of immuno-oncology drugs can generate knowledge that informs and prioritizes new immuno-oncology therapy in humans. The challenge has been, however, that immunotherapeutic antibodies targeting canine immune checkpoint molecules such as canine PD-L1 (cPD-L1) have not been commercially available. Here, we developed a new cPD-L1 antibody as an immuno-oncology drug and characterized its functional and biological properties in multiple assays. We also evaluated the therapeutic efficacy of cPD-L1 antibodies in our unique caninized PD-L1 mice. Together, these in vitro and in vivo data, which include an initial safety profile in laboratory dogs, support development of this cPD-L1 antibody as an immune checkpoint inhibitor for studies in dogs with naturally occurring cancer for translational research. Our new therapeutic antibody and caninized PD-L1 mouse model will be essential translational research tools in raising the success rate of immunotherapy in both dogs and humans. Significance: Our cPD-L1 antibody and unique caninized mouse model will be critical research tools to improve the efficacy of immune checkpoint blockade therapy in both dogs and humans. Furthermore, these tools will open new perspectives for immunotherapy applications in cancer as well as other autoimmune diseases that could benefit a diverse and broader patient population.


Asunto(s)
Neoplasias , Investigación Biomédica Traslacional , Humanos , Perros , Animales , Ratones , Antígeno B7-H1 , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/tratamiento farmacológico , Inmunoterapia , Anticuerpos
2.
Front Oncol ; 12: 968360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185242

RESUMEN

Immunotherapy, powered by its relative efficacy and safety, has become a prominent therapeutic strategy utilized in the treatment of a wide range of diseases, including cancer. Within this class of therapeutics, there is a variety of drug types such as immune checkpoint blockade therapies, vaccines, and T cell transfer therapies that serve the purpose of harnessing the body's immune system to combat disease. Of these different types, immune checkpoint blockades that target coinhibitory receptors, which dampen the body's immune response, have been widely studied and established in clinic. In contrast, however, there remains room for the development and improvement of therapeutics that target costimulatory receptors and enhance the immune response against tumors, one of which being the 4-1BB (CD137/ILA/TNFRSF9) receptor. 4-1BB has been garnering attention as a promising therapeutic target in the setting of cancer, amongst other diseases, due to its broad expression profile and ability to stimulate various signaling pathways involved in the generation of a potent immune response. Since its discovery and demonstration of potential as a clinical target, major progress has been made in the knowledge of 4-1BB and the development of clinical therapeutics that target it. Thus, we seek to summarize and provide a comprehensive update and outlook on those advancements in the context of cancer and immunotherapy.

3.
Cells ; 11(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011724

RESUMEN

Leveraging the T cell immunity against tumors represents a revolutionary type of cancer therapy. 4-1BB is a well-characterized costimulatory immune receptor existing on activated T cells and mediating their proliferation and cytotoxicity under infectious diseases and cancers. Despite the accumulating interest in implementing 4-1BB as a therapeutic target for immune-related disorders, less is known about the pattern of its intracellular behaviors and regulations. It has been previously demonstrated that 4-1BB is heavily modified by N-glycosylation; however, the biological importance of this modification lacks detailed elucidation. Through biochemical, biophysical, and cell-biological approaches, we systematically evaluated the impact of N-glycosylation on the ligand interaction, stability, and localization of 4-1BB. We hereby highlighted that N-glycan functions by preventing the oligomerization of 4-1BB, thus permitting its membrane transportation and fast turn-over. Without N-glycosylation, 4-1BB could be aberrantly accumulated intracellularly and fail to be sufficiently inserted in the membrane. The N-glycosylation-guided intracellular processing of 4-1BB serves as the potential mechanism explicitly modulating the "on" and "off" of 4-1BB through the control of protein abundance. Our study will further solidify the understanding of the biological properties of 4-1BB and facilitate the clinical practice against this promising therapeutic target.


Asunto(s)
Ligando 4-1BB/metabolismo , Inmunoterapia/métodos , Glicosilación , Humanos
4.
Cells ; 10(5)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064396

RESUMEN

Evading host immune surveillance is one of the hallmarks of cancer. Immune checkpoint therapy, which aims to eliminate cancer progression by reprogramming the antitumor immune response, currently occupies a solid position in the rapidly expanding arsenal of cancer therapy. As most immune checkpoints are membrane glycoproteins, mounting attention is drawn to asking how protein glycosylation affects immune function. The answers to this fundamental question will stimulate the rational development of future cancer diagnostics and therapeutic strategies.


Asunto(s)
Neoplasias/inmunología , Procesamiento Proteico-Postraduccional , Receptores Inmunológicos/metabolismo , Animales , Glicosilación , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico
5.
Mol Carcinog ; 59(7): 691-700, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32115801

RESUMEN

Triple-negative breast cancer (TNBC) lacks a well-defined molecular target and is associated with poorer outcomes compared to other breast cancer subtypes. Programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy shows a 10% to 20% response rate in TNBC patients. Our previous studies show that PD-L1 proteins are heavily glycosylated in TNBC, and the glycosylation plays an important role in the PD-L1 protein's stability and immunosuppressive function. However, a strategy for PD-L1 deglycosylation in TNBC is poorly defined. Here we found that a saccharide analog, 2-deoxy- d-glucose (2-DG), inhibits glycosylation of PD-L1 and its immunosuppressive function by combining with EGFR inhibitor, gefitinib. Interestingly, 2-DG/gefitinib-induced deglycosylation of PD-L1 decreased the expression level of PD-L1 protein as well as its binding with PD-1. However, there was no significant decrease in 4-1BB expression and its binding with 4-1BBL by 2-DG/gefitinib. Furthermore, we demonstrated that the combination treatment of 2-DG/gefitinib and 4-1BB antibody enhances antitumor immunity in TNBC syngeneic murine models. Together, our results suggest a new immunotherapeutic strategy to enhance antitumor immunity by PD-L1 deglycosylation and 4-1BB stimulation in TNBC.


Asunto(s)
Antineoplásicos/farmacología , Antígeno B7-H1/metabolismo , Desoxiglucosa/farmacología , Glucosa/farmacología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/terapia , Animales , Anticuerpos/farmacología , Línea Celular , Línea Celular Tumoral , Femenino , Gefitinib/farmacología , Células HEK293 , Humanos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...