Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Biophotonics ; : e202400138, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952169

RESUMEN

Neurological disorders such as Parkinson's disease (PD) often adversely affect the vascular system, leading to alterations in blood flow patterns. Functional near-infrared spectroscopy (fNIRS) is used to monitor hemodynamic changes via signal measurement. This study investigated the potential of using resting-state fNIRS data through a convolutional neural network (CNN) to evaluate PD with orthostatic hypotension. The CNN demonstrated significant efficacy in analyzing fNIRS data, and it outperformed the other machine learning methods. The results indicate that judicious input data selection can enhance accuracy by over 85%, while including the correlation matrix as an input further improves the accuracy to more than 90%. This study underscores the promising role of CNN-based fNIRS data analysis in the diagnosis and management of the PD. This approach enhances diagnostic accuracy, particularly in resting-state conditions, and can reduce the discomfort and risks associated with current diagnostic methods, such as the head-up tilt test.

2.
Int J Surg ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752517

RESUMEN

BACKGROUND: Segmentectomy, recommended for early-stage lung cancer or compromised lung function, demands precise tumor detection and intersegmental plane identification. While Indocyanine green (ICG) commonly aids in these aspects using near-infrared (NIR) imaging, its separate administrations through different routes and times can lead to complications and patient anxiety. This study aims to develop a lung-specific delivery method by nebulizing low-dose ICG to targeted lung segments, allowing simultaneous detection of lung tumors and intersegmental planes across diverse animal models. METHODS: To optimizing the dose of ICG for lung tumor and interlobar fissure detection, different doses of ICG (0.25, 0.1 and 0.05 mg/kg) were nebulized to rabbit lung tumor models. The distribution of locally nebulized ICG in targeted segments was studied to evaluate the feasibility of detecting lung tumor and intersegmental planes in canine lung pseudotumor models. RESULTS: NIR fluorescence imaging demonstrated clear visualization of lung tumor margin and interlobar fissure using local nebulization of 0.1 mg/kg ICG for only 4 min during surgery in the rabbit models. In the canine model, the local nebulization of 0.05 mg/kg of ICG into the target segment enabled clear visualization of pseudotumor and intersegmental planes for 30 min. CONCLUSIONS: This innovative approach achieves a reduction in ICG dose and prolonged the visualization time of the intersegmental plane and effectively eliminates the need for the hurried marking of tumors and intersegmental planes. We anticipate that lung specific delivery of ICG will prove valuable for image-guided limited resection of lung tumors in clinical practice.

3.
Cancers (Basel) ; 16(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611116

RESUMEN

Segmentectomy is a targeted surgical approach tailored for patients with compromised health and early-stage lung cancer. The key to successful segmentectomy lies in precisely identifying the tumor and intersegmental planes to ensure adequate resection margins. In this study, we aimed to enhance this process by simultaneously visualizing the tumor and intersegmental planes through the intravenous injection of indocyanine green (ICG) at different time points and doses. Lung tumors were detected by intravenous injection of ICG at a dose of 2 mg/kg 12 h before surgery in a rabbit model. Following the dissection of the pulmonary artery, vein, and bronchi of the target segment, 0.6 mg/kg of ICG was injected intravenously to detect the intersegmental plan. Fluorescent images of the lung tumors and segments were acquired, and the fluorescent signal was quantified using the signal-to-background ratio (SBR). Finally, a pilot study of this method was conducted in three patients with lung cancer. In a preclinical study, the SBR of the tumor (4.4 ± 0.1) and nontargeted segments (10.5 ± 0.8) were significantly higher than that of the targeted segment (1.6 ± 0.2) (targeted segment vs. nontarget segment, p < 0.0001; target segment vs. tumor, p < 0.01). Consistent with preclinical results, lung tumors and the intersegmental plane were successfully detected in patients with lung cancer. Consequently, adequate resection margins were identified during the surgery, and segmentectomy was successfully performed in patients with lung cancer. This study is the first to use intravenous ICG injections at different time points and doses to simultaneously detect lung cancer and intersegmental planes, thereby achieving segmentectomy for lung cancer.

4.
Int J Surg ; 110(5): 2692-2700, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377062

RESUMEN

BACKGROUND: This study aimed to evaluate the effectiveness of neo-mannosyl human serum albumin-indocyanine green (MSA-ICG) for detecting metastatic lymph node (LN) and mapping sentinel lymph node (SLN) using mouse footpad uterine tumor models. Additionally, the authors assessed the feasibility of MSA-ICG in SLN mapping in rabbit uterine cancer models. MATERIALS AND METHODS: The authors compared the LN targeting ability of MSA-ICG with ICG. Six mouse footpad tumor models and two normal mice were each assigned to MSA-ICG and ICG, respectively. After the assigned tracers were injected, fluorescence images were taken, and the authors compared the signal-to-background ratio (SBR) of the tracers. A SLN biopsy was performed to confirm LN metastasis status and CD206 expression level. Finally, an intraoperative SLN biopsy was performed in rabbit uterine cancer models using MSA-ICG. RESULTS: The authors detected 14 groin LNs out of 16 in the MSA-ICG and ICG groups. The SBR of the MSA-ICG group was significantly higher than that of the ICG group. The metastatic LN subgroup of MSA-ICG showed a significantly higher SBR than that of ICG. CD206 was expressed at a high level in metastatic LN, and the signal intensity difference increased as the CD206 expression level increased. SLN mapping was successfully performed in two of the three rabbit uterine cancer models. CONCLUSIONS: MSA-ICG was able to distinguish metastatic LN for an extended period due to its specific tumor-associated macrophage-targeting property. Therefore, it may be a more distinguishable tracer for identifying metastatic LNs and SLNs during uterine cancer surgery. Further research is needed to confirm these results.


Asunto(s)
Modelos Animales de Enfermedad , Verde de Indocianina , Lectinas Tipo C , Metástasis Linfática , Receptor de Manosa , Lectinas de Unión a Manosa , Receptores de Superficie Celular , Ganglio Linfático Centinela , Neoplasias Uterinas , Animales , Femenino , Conejos , Verde de Indocianina/administración & dosificación , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/análisis , Ratones , Neoplasias Uterinas/patología , Neoplasias Uterinas/cirugía , Ganglio Linfático Centinela/patología , Ganglio Linfático Centinela/metabolismo , Receptores de Superficie Celular/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/análisis , Biopsia del Ganglio Linfático Centinela/métodos
5.
Cancers (Basel) ; 15(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37509304

RESUMEN

ICG fluorescence imaging has been used to detect lung cancer; however, there is no consensus regarding the optimization of the indocyanine green (ICG) injection method. The aim of this study was to determine the optimal dose and timing of ICG for lung cancer detection using animal models and to evaluate the feasibility of ICG fluorescence in lung cancer patients. In a preclinical study, twenty C57BL/6 mice with footpad cancer and thirty-three rabbits with VX2 lung cancer were used. These animals received an intravenous injection of ICG at 0.5, 1, 2, or 5 mg/kg, and the cancers were detected using a fluorescent imaging system after 3, 6, 12, and 24 h. In a clinical study, fifty-one patients diagnosed with lung cancer and scheduled to undergo surgery were included. Fluorescent images of lung cancer were obtained, and the fluorescent signal was quantified. Based on a preclinical study, the optimal injection method for lung cancer detection was 2 mg/kg ICG 12 h before surgery. Among the 51 patients, ICG successfully detected 37 of 39 cases with a consolidation-to-tumor (C/T) ratio of >50% (TNR: 3.3 ± 1.2), while it failed in 12 cases with a C/T ratio ≤ 50% and 2 cases with anthracosis. ICG injection at 2 mg/kg, 12 h before surgery was optimal for lung cancer detection. Lung cancers with the C/T ratio > 50% were successfully detected using ICG with a detection rate of 95%, but not with the C/T ratio ≤ 50%. Therefore, further research is needed to develop fluorescent agents targeting lung cancer.

6.
J Clin Neurol ; 19(4): 428, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37417443

RESUMEN

This corrects the article on p. 115 in vol. 19, PMID: 36854332.

7.
Front Bioeng Biotechnol ; 11: 1127563, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064241

RESUMEN

Significance: Early assessment of local tissue oxygen saturation is essential for clinicians to determine the burn wound severity. Background: We assessed the burn extent and depth in the skin of the extremities using a custom-built 36-channel functional near-infrared spectroscopy system in patients with burns. Methods: A total of nine patients with burns were analyzed in this study. All second-degree burns were categorized as superficial, intermediate, and deep burns; non-burned skin on the burned side; and healthy skin on the contralateral non-burned side. Hemodynamic tissue signals from functional near-infrared spectroscopy attached to the burn site were measured during fNIRS using a blood pressure cuff. A nerve conduction study was conducted to check for nerve damage. Results: All second-degree burns were categorized into superficial, intermediate, and deep burns; non-burned skin on the burned side and healthy skin on the contralateral non-burned side showed a significant difference distinguishable using functional near-infrared spectroscopy. Hemodynamic measurements using functional near-infrared spectroscopy were more consistent with the diagnosis of burns 1 week later than that of the degree of burns diagnosed visually at the time of admission. Conclusion: Functional near-infrared spectroscopy may help with the early judgment of burn extent and depth by reflecting differences in the oxygen saturation levels in the skin.

8.
Cancers (Basel) ; 15(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37046626

RESUMEN

Indocyanine green (ICG) has been used to detect several types of tumors; however, its ability to detect metastatic lymph nodes (LNs) remains unclear. Our goal was to determine the feasibility of ICG in detecting metastatic LNs. We established a mouse model and evaluated the potential of ICG. The feasibility of detecting metastatic LNs was also evaluated in patients with lung or esophageal cancer, detected with computed tomography (CT) or positron-emission tomography (PET)/CT, and scheduled to undergo surgical resection. Tumors and metastatic LNs were successfully detected in the mice. In the clinical study, the efficacy of ICG was evaluated in 15 tumors and fifty-four LNs with suspected metastasis or anatomically key regional LNs. All 15 tumors were successfully detected. Among the fifty-four LNs, eleven were pathologically confirmed to have metastasis; all eleven were detected in ICG fluorescence imaging, with five in CT and seven in PET/CT. Furthermore, thirty-four LNs with no signals were pathologically confirmed as nonmetastatic. Intravenous injection of ICG may be a useful tool to detect metastatic LNs and tumors. However, ICG is not a targeting agent, and its relatively low fluorescence makes it difficult to use to detect tumors in vivo. Therefore, further studies are needed to develop contrast agents and devices that produce increased fluorescence signals.

9.
Biomed Opt Express ; 14(2): 577-592, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36874497

RESUMEN

Biomedical researchers use optical coherence microscopy (OCM) for its high resolution in real-time label-free tomographic imaging. However, OCM lacks bioactivity-related functional contrast. We developed an OCM system that can measure changes in intracellular motility (indicating cellular process states) via pixel-wise calculations of intensity fluctuations from metabolic activity of intracellular components. To reduce image noise, the source spectrum is split into five using Gaussian windows with 50% of the full bandwidth. The technique verified that F-actin fiber inhibition by Y-27632 reduces intracellular motility. This finding could be used to search for other intracellular-motility-associated therapeutic strategies for cardiovascular diseases.

10.
J Clin Neurol ; 19(2): 115-124, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36854332

RESUMEN

The sustained growth of digital healthcare in the field of neurology relies on portable and cost-effective brain monitoring tools that can accurately monitor brain function in real time. Functional near-infrared spectroscopy (fNIRS) is one such tool that has become popular among researchers and clinicians as a practical alternative to functional magnetic resonance imaging, and as a complementary tool to modalities such as electroencephalography. This review covers the contribution of fNIRS to the personalized goals of digital healthcare in neurology by identifying two major trends that drive current fNIRS research. The first major trend is multimodal monitoring using fNIRS, which allows clinicians to access more data that will help them to understand the interconnection between the cerebral hemodynamics and other physiological phenomena in patients. This allows clinicians to make an overall assessment of physical health to obtain a more-detailed and individualized diagnosis. The second major trend is that fNIRS research is being conducted with naturalistic experimental paradigms that involve multisensory stimulation in familiar settings. Cerebral monitoring of multisensory stimulation during dynamic activities or within virtual reality helps to understand the complex brain activities that occur in everyday life. Finally, the scope of future fNIRS studies is discussed to facilitate more-accurate assessments of brain activation and the wider clinical acceptance of fNIRS as a medical device for digital healthcare.

11.
Ann Surg Oncol ; 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35262823

RESUMEN

BACKGROUND: Indocyanine green (ICG) fluorescence imaging has been used to detect many types of tumors during surgery; however, there are few studies on thymic masses and the dose and time of ICG injection have not been optimized. OBJECTIVE: We aimed to evaluate the optimal ICG injection dose and timing for detecting thymic masses during surgery. METHOD: Forty-nine consecutive patients diagnosed with thymic masses on preoperative computed tomography (CT) and scheduled to undergo thymic cystectomy or thymectomy were included. Patients were administered 1, 2, or 5 mg/kg of ICG at different times. Thymic masses were observed during and after surgery using a near-infrared fluorescence imaging system, and the fluorescence signal tumor-to-normal ratio (TNR) was analyzed. RESULTS: Among the 49 patients, 14 patients with thymic cysts showed negative fluorescence signals, 33 patients with thymoma or thymic carcinoma showed positive fluorescence signals, and 2 patients showed insufficient fluorescence signals. The diagnosis of thymic masses based on CT was correct in 32 (65%) of 49 cases; however, the differential diagnosis of thymic masses based on NIR signals was correct in 47 of 49 cases (96%), including 14 cases of thymic cysts (100%) and 33 cases of thymomas or thymic carcinomas (94%). In addition, TNR was not affected by the time or dose of ICG injection, histological type, stage, or tumor size. CONCLUSIONS: Low-dose intravenous injection of ICG at flexible time can detect thymic tumors. In addition, thymic cysts can be distinguished from thymomas or thymic carcinomas during surgery by the absence of ICG fluorescence signals.

13.
Sci Rep ; 11(1): 22774, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815473

RESUMEN

A reflection phase microscope (RPM) can be equipped with the capability of depth selection by employing a gating mechanism. However, it is difficult to achieve an axial resolution close to the diffraction limit in real implementation. Here, we systematically investigated the uneven interference contrast produced by pupil transmittance of the objective lens and found that it was the main cause of the practical limit that prevents the axial resolution from reaching its diffraction limit. Then we modulated the power of illumination light to obtain a uniform interference contrast over the entire pupil. Consequently, we could achieve an axial resolution fairly close to the diffraction limit set by the experimental conditions.

14.
Photoacoustics ; 24: 100291, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34485074

RESUMEN

In recent years, many methods have been investigated to improve imaging speed in photoacoustic microscopy (PAM). These methods mainly focused upon three critical factors contributing to fast PAM: laser pulse repetition rate, scanning speed, and computing power of the microprocessors. A high laser repetition rate is fundamentally the most crucial factor to increase the PAM speed. In this paper, we review methods adopted for fast PAM systems in detail, specifically with respect to light sources. To the best of our knowledge, ours is the first review article analyzing the fundamental requirements for developing high-speed PAM and their limitations from the perspective of light sources.

15.
Diagnostics (Basel) ; 11(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064205

RESUMEN

The different pathways between the position of a near-infrared camera and the user's eye limit the use of existing near-infrared fluorescence imaging systems for tumor margin assessments. By utilizing an optical system that precisely matches the near-infrared fluorescence image and the optical path of visible light, we developed an augmented reality (AR)-based fluorescence imaging system that provides users with a fluorescence image that matches the real-field, without requiring any additional algorithms. Commercial smart glasses, dichroic beam splitters, mirrors, and custom near-infrared cameras were employed to develop the proposed system, and each mount was designed and utilized. After its performance was assessed in the laboratory, preclinical experiments involving tumor detection and lung lobectomy in mice and rabbits by using indocyanine green (ICG) were conducted. The results showed that the proposed system provided a stable image of fluorescence that matched the actual site. In addition, preclinical experiments confirmed that the proposed system could be used to detect tumors using ICG and evaluate lung lobectomies. The AR-based intraoperative smart goggle system could detect fluorescence images for tumor margin assessments in animal models, without disrupting the surgical workflow in an operating room. Additionally, it was confirmed that, even when the system itself was distorted when worn, the fluorescence image consistently matched the actual site.

16.
Neurophotonics ; 8(2): 025013, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34179215

RESUMEN

Significance: We propose a customized animal-specific head cap and an near-infrared spectroscopy (NIRS) system to obtain NIRS signals in mobile small animals. NIRS studies in mobile small animals provide a feasible solution for comprehensive brain function studies. Aim: We aim to develop and validate a multichannel NIRS system capable of performing functional brain imaging along with a closed-box stimulation kit for small animals in mobile conditions. Approach: The customized NIRS system uses light-weight long optical fibers, along with a customized light-weight head cap to securely attach the optical fibers to the mouse. A customized stimulation box was designed to perform various stimuli in a controlled environment. The system performance was tested in a visual stimulation task on eight anesthetized mice and eight freely moving mice. Results: Following the visual stimulation task, we observed a significant stimulation-related oxyhemoglobin (HbO) increase in the visual cortex of freely moving mice during the task. In contrast, HbO concentration did not change significantly in the visual cortex of anesthetized mice. Conclusions: We demonstrate the feasibility of a wearable, multichannel NIRS system for small animals in a less confined experimental design.

17.
iScience ; 24(4): 102267, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33817573

RESUMEN

Optical clearing has emerged as a powerful tool for volume imaging. Although volume imaging with immunostaining have been successful in many protocols, yet obtaining homogeneously stained thick samples remains challenging. Here, we propose a method for label-free imaging of brain slices by enhancing the regional heterogeneity of the optical properties using the tissue clearing principle. We used FxClear, a method for delipidation of brain tissue, to retain a larger proportion of lipids at the white matter (WM). Furthermore, the embedding media affected the contrasts for the lipid-rich or extracellular matrix-rich areas, depending on their chemical properties. Thus, we tailored clearing conditions for the enhancement of the refractive indices (RIs) differences between gray and WM, or several pathological features. RI differences can be imaged using conventional light microscopy or optical coherence tomography. We propose that our protocol is simple, reliable, and flexible for label-free imaging, easily implementable to routine histology laboratory.

18.
Ann Surg ; 273(5): 989-996, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30973387

RESUMEN

OBJECTIVE: This study was conducted to develop a fluorescent iodized emulsion comprising indocyanine green (ICG) solution and lipiodol (ethiodized oil) and evaluate its feasibility for use in a clinical setting. BACKGROUND: ICG use for the preoperative localization of pulmonary nodules is limited in terms of penetration depth and diffusion. METHODS: First, fluorescent microscopy was used to investigate the distribution of ICG-lipiodol emulsions prepared using different methods. The emulsions were injected in 15 lung lobes of 3 rabbits under computed tomography fluoroscopy guidance; evaluation with imaging and radiography was conducted after thoracotomy. Subsequently, the emulsions were used to preoperatively localize 29 pulmonary nodules in 24 human subjects, and wedge resections were performed using fluorescent imaging and C-arm fluoroscopy. RESULTS: The optimal emulsion of 10% ICG and 90% lipiodol mixed through 90 passages had even distribution and the highest signal intensity under fluorescent microscopy; it also had the best consistency in the rabbit lungs, which persisted for 24 hours at the injection site. In human subjects, the mean diameter of pulmonary nodules was 0.9 ±â€Š0.4 cm, and depth from the pleura was 1.2 ± 0.8 cm. All emulsion types injected were well localized around the target nodules without any side effects or procedure-related complications. Wedge resection with minimally invasive approach was successful in all pulmonary nodules with a free resection margin. CONCLUSIONS: A fluorescent iodized emulsion prepared by mixing ICG with lipiodol enabled accurate localization and resection of pulmonary nodules.


Asunto(s)
Medios de Contraste/farmacología , Colorantes Fluorescentes/farmacología , Radioisótopos de Yodo/farmacología , Nódulos Pulmonares Múltiples/diagnóstico , Cirugía Torácica Asistida por Video , Tomografía Computarizada por Rayos X/métodos , Animales , Emulsiones , Humanos , Neoplasias Pulmonares/cirugía , Nódulos Pulmonares Múltiples/cirugía , Neoplasias Experimentales , Periodo Preoperatorio , Conejos
19.
J Thorac Dis ; 13(11): 6314-6322, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34992811

RESUMEN

BACKGROUND: We aimed to assess the possibility of detecting esophageal cancer after intravenous injection of indocyanine green (ICG) in preclinical and clinical models. METHODS: Forty-five rabbits were surgically implanted with VX2 tumors into the esophageal muscular layer 2 weeks before esophagectomy. The rabbits received intravenous injection of ICG at doses of 1, 2, or 5 mg/kg at 3, 6, 12, 24, or 48 h before surgical removal of esophagus. Twelve patients scheduled to undergo esophagectomy were also enrolled, and all received 2 mg/kg of ICG intravenously at 3, 6, 12, or 24 h before surgical removal of esophagus. The fluorescence intensity was measured in all resected specimens from the rabbits and patients using a near-infrared (NIR) fluorescence imaging system after surgery. RESULTS: Esophageal tumors were successfully established in all rabbits, and fluorescent signals were detected in all animal and patient specimens. Tumor-to-normal ratio (TNR) analysis showed that higher doses resulted in a greater TNR. Injection of at least 2 mg/kg of ICG was required for clear visualization of the tumor, and the TNR was highest at 12 h after injection. The TNR in patients was also highest at 12 h (P=0.0004), with 2 mg/kg of ICG. None of the patients had major complications following ICG injection. CONCLUSIONS: NIR fluorescence imaging can be used to visualize esophageal cancer after systemic injection of ICG. ICG at 2 mg/kg at 12 h is optimal for tumor detection. However, since the clinical trials were conducted in a small number of patients, further studies are needed in larger populations.

20.
Neurophotonics ; 7(4): 045006, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33163544

RESUMEN

Significance: Cerebral oxygenation changes in the superior, middle, and medial gyri were used to elucidate spatial impairments of autonomic hemodynamic recovery during the head-up tilt table test (HUTT) in Parkinson's disease (PD) patients with orthostatic intolerance (OI) symptoms. Aim: To analyze dynamic oxygenation changes during the HUTT and classify PD patients with OI symptoms using clinical and oxygenation features. Approach: Thirty-nine PD patients with OI symptoms [10: orthostatic hypotension (PD-OH); 29: normal HUTT results (PD-NOR)] and seven healthy controls (HCs) were recruited. Prefrontal oxyhemoglobin (HbO) changes during the HUTT were reconstructed with diffuse optical tomography and segmented using the automated anatomical labeling system. Decision trees were used for classification. Results: HCs and PD-NOR patients with positive rates of HbO change (PD-POS) showed the greatest HbO recovery in the superior frontal gyrus (SFG) during tilt. PD-OH and PD-NOR patients with negative rates of HbO change (PD-NEG) showed asymmetric reoxygenation. The classification accuracy was 89.4% for PD-POS versus PD-NEG, 71% for PD-NOR versus PD-OH, and 55.8% for PD-POS versus PD-NEG versus PD-OH. The oxygenation features were more discriminative than the clinical features. Conclusions: PD-OH showed decreased right SFG function, which may be associated with impaired compensatory autonomic responses to orthostatic stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...