Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hepatology ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563629

RESUMEN

BACKGROUND AND AIMS: Fibrosis is the common end point for all forms of chronic liver injury, and the progression of fibrosis leads to the development of end-stage liver disease. Activation of HSCs and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix proteins that form the fibrotic scar. Long noncoding RNAs regulate the activity of HSCs and provide targets for fibrotic therapies. APPROACH AND RESULTS: We identified long noncoding RNA TILAM located near COL1A1 , expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates the expression of COL1A1 and other extracellular matrix genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog ( Tilam ), generated Tilam- deficient green fluorescent protein-reporter mice, and challenged these mice in 2 different models of liver fibrosis. Single-cell data and analysis of single-data and analysis of Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Tilam -deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated the development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with promyelocytic leukemia nuclear body scaffold protein to regulate a feedback loop by which TGF-ß2 reinforces TILAM expression and nuclear localization of promyelocytic leukemia nuclear body scaffold protein to promote the fibrotic activity of HSCs. CONCLUSIONS: TILAM is activated in HSCs with liver injury and interacts with promyelocytic leukemia nuclear body scaffold protein to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end-stage liver disease.

2.
Aging Cell ; : e14184, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687090

RESUMEN

Cellular senescence contributes to inflammatory kidney disease via the secretion of inflammatory and profibrotic factors. Protease-activating receptor 2 (PAR2) is a key regulator of inflammation in kidney diseases. However, the relationship between PAR2 and cellular senescence in kidney disease has not yet been described. In this study, we found that PAR2-mediated metabolic changes in renal tubular epithelial cells induced cellular senescence and increased inflammatory responses. Using an aging and renal injury model, PAR2 expression was shown to be associated with cellular senescence. Under in vitro conditions in NRK52E cells, PAR2 activation induces tubular epithelial cell senescence and senescent cells showed defective fatty acid oxidation (FAO). Cpt1α inhibition showed similar senescent phenotype in the cells, implicating the important role of defective FAO in senescence. Finally, we subjected mice lacking PAR2 to aging and renal injury. PAR2-deficient kidneys are protected from adenine- and cisplatin-induced renal fibrosis and injury, respectively, by reducing senescence and inflammation. Moreover, kidneys lacking PAR2 exhibited reduced numbers of senescent cells and inflammation during aging. These findings offer fresh insights into the mechanisms underlying renal senescence and indicate that targeting PAR2 or FAO may be a promising therapeutic approach for managing kidney injury.

3.
J Transl Med ; 21(1): 757, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884933

RESUMEN

Liver steatosis, inflammation, and variable degrees of fibrosis are the pathological manifestations of nonalcoholic steatohepatitis (NASH), an aggressive presentation of the most prevalent chronic liver disease in the Western world known as nonalcoholic fatty liver (NAFL). Mitochondrial hepatocyte dysfunction is a primary event that triggers inflammation, affecting Kupffer and hepatic stellate cell behaviour. Here, we consider the role of impaired mitochondrial function caused by lipotoxicity during oxidative stress in hepatocytes. Dysfunction in oxidative phosphorylation and mitochondrial ROS production cause the release of damage-associated molecular patterns from dying hepatocytes, leading to activation of innate immunity and trans-differentiation of hepatic stellate cells, thereby driving fibrosis in NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Hepatocitos/patología , Inflamación/patología , Fibrosis , Mitocondrias/patología
4.
bioRxiv ; 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37546982

RESUMEN

Background & Aims: Fibrosis is the common endpoint for all forms of chronic liver injury, and progression of fibrosis leads to the development of end-stage liver disease. Activation of hepatic stellate cells (HSCs) and their transdifferentiation to myofibroblasts results in the accumulation of extracellular matrix (ECM) proteins that form the fibrotic scar. Long noncoding (lnc) RNAs regulate the activity of HSCs and may provide targets for fibrotic therapies. Methods: We identified lncRNA TILAM as expressed near COL1A1 in human HSCs and performed loss-of-function studies in human HSCs and liver organoids. Transcriptomic analyses of HSCs isolated from mice defined the murine ortholog of TILAM . We then generated Tilam -deficient GFP reporter mice and quantified fibrotic responses to carbon tetrachloride (CCl 4 ) and choline-deficient L-amino acid defined high fat diet (CDA-HFD). Co-precipitation studies, mass spectrometry, and gene expression analyses identified protein partners of TILAM . Results: TILAM is conserved between human and mouse HSCs and regulates expression of ECM proteins, including collagen. Tilam is selectively induced in HSCs during the development of fibrosis in vivo . In both male and female mice, loss of Tilam results in reduced fibrosis in the setting of CCl 4 and CDA-HFD injury models. TILAM interacts with promyelocytic leukemia protein (PML) to stabilize PML protein levels and promote the fibrotic activity of HSCs. Conclusion: TILAM is activated in HSCs and interacts with PML to drive the development of liver fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end stage liver disease.

5.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166474, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772632

RESUMEN

A high-fat diet (HFD) is a major risk factor for chronic kidney disease. Although HFD promotes renal injury, characterized by increased inflammation and oxidative stress leading to fibrosis, the underlying mechanism remains elusive. Here, we investigated the role and mechanism of protease-activating receptor 2 (PAR2) activation during HFD-induced renal injury in C57/BL6 mice. HFD for 16 weeks resulted in kidney injury, manifested by increased blood levels of blood urea nitrogen, increased levels of oxidative stress with inflammation, and structural changes in the kidney tubules. HFD-fed kidneys showed elevated PAR2 expression level in the tubular epithelial region. To elucidate the role of PAR2, PAR2 knockout mice and their littermates were administered HFD. PAR2 deficient kidneys showed reduced extent of renal injury. PAR2 deficient kidneys showed significantly decreased levels of inflammatory gene expression and macrophage infiltration, followed by reduced accumulation of extracellular matrix proteins. Using NRK52E kidney epithelial cells, we further elucidated the mechanism and role of PAR2 activation during renal injury. Palmitate treatment increased PAR2 expression level in NRK52E cells and scavenging of oxidative stress blocked PAR2 expression. Under palmitate-treated conditions, PAR2 agonist-induced NF-κB activation level was higher with increased chemokine expression level in the cells. These changes were attenuated by the depletion of oxidative stress. Taken together, our results suggest that HFD-induced PAR2 activation is associated with increased levels of renal oxidative stress, inflammatory response, and fibrosis.


Asunto(s)
Dieta Alta en Grasa , Riñón , Receptor PAR-2 , Animales , Dieta Alta en Grasa/efectos adversos , Fibrosis , Inflamación/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Palmitatos , Receptor PAR-2/genética
6.
J Nutr Biochem ; 95: 108769, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34000413

RESUMEN

Protease-activated receptor 2 (PAR2) is a member of G protein-coupled receptors. There are two types of PAR2 signaling pathways: Canonical G-protein signaling and ß-arrestin signaling. Although PAR2 signaling has been reported to aggravate hepatic steatosis, the exact mechanism is still unclear, and the role of PAR2 in autophagy remains unknown. In this study, we investigated the regulatory role of PAR2 in autophagy during high-fat diet (HFD)-induced hepatic steatosis in mice. Increased protein levels of PAR2 and ß-arrestin-2 and their interactions were detected after four months of HFD. To further investigate the role of PAR2, male and female wild-type (WT) and PAR2-knockout (PAR2 KO) mice were fed HFD. PAR2 deficiency protected HFD-induced hepatic steatosis in male mice, but not in female mice. Interestingly, PAR2-deficient liver showed increased AMP-activated protein kinase (AMPK) activation with decreased interaction between Ca2+/calmodulin-dependent protein kinase kinase ß (CAMKKß) and ß-arrestin-2. In addition, PAR2 deficiency up-regulated autophagy in the liver. To elucidate whether PAR2 plays a role in the regulation of autophagy and lipid accumulation in vitro, PAR2 was overexpressed in HepG2 cells. Overexpression of PAR2 decreased AMPK activation with increased interaction of CAMKKß with ß-arrestin-2 and significantly inhibited autophagic responses in HepG2 cells. Inhibition of autophagy by PAR2 overexpression further exacerbated palmitate-induced lipid accumulation in HepG2 cells. Collectively, these findings suggest that the increase in the PAR2-ß-arrestin-2-CAMKKß complex by HFD inhibits AMPK-mediated autophagy, leading to the alleviation of hepatic steatosis.


Asunto(s)
Adenilato Quinasa/metabolismo , Autofagia/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Receptor PAR-2/metabolismo , Adenilato Quinasa/genética , Animales , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/efectos adversos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor PAR-2/genética , Regulación hacia Arriba , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
7.
Endocrinol Metab (Seoul) ; 36(1): 171-184, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33677938

RESUMEN

BACKGROUND: Protease-activated protein-2 (PAR2) has been reported to regulate hepatic insulin resistance condition in type 2 diabetes mice. However, the mechanism of lipid metabolism through PAR2 in obesity mice have not yet been examined. In liver, Forkhead box O1 (FoxO1) activity induces peroxisome proliferator-activated receptor γ (PPARγ), leading to accumulation of lipids and hyperlipidemia. Hyperlipidemia significantly influence hepatic steatoses, but the mechanisms underlying PAR2 signaling are complex and have not yet been elucidated. METHODS: To examine the modulatory action of FoxO1 and its altered interaction with PPARγ, we utilized db/db mice and PAR2-knockout (KO) mice administered with high-fat diet (HFD). RESULTS: Here, we demonstrated that PAR2 was overexpressed and regulated downstream gene expressions in db/db but not in db+ mice. The interaction between PAR2/ß-arrestin and Akt was also greater in db/db mice. The Akt inhibition increased FoxO1 activity and subsequently PPARγ gene in the livers that led to hepatic lipid accumulation. Our data showed that FoxO1 was negatively controlled by Akt signaling and consequently, the activity of a major lipogenesis-associated transcription factors such as PPARγ increased, leading to hepatic lipid accumulation through the PAR2 pathway under hyperglycemic conditions in mice. Furthermore, the association between PPARγ and FoxO1 was increased in hepatic steatosis condition in db/db mice. However, HFD-fed PAR2-KO mice showed suppressed FoxO1-induced hepatic lipid accumulation compared with HFD-fed control groups. CONCLUSION: Collectively, our results provide evidence that the interaction of FoxO1 with PPARγ promotes hepatic steatosis in mice. This might be due to defects in PAR2/ß-arrestin-mediated Akt signaling in diabetic and HFD-fed mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Animales , Lípidos , Lipogénesis , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Theranostics ; 11(1): 14-26, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391458

RESUMEN

Rationale: Liver fibrosis is frequently associated with gut barrier dysfunction, and the lipopolysaccharides (LPS) -TLR4 pathway is common to the development of both. Intestinal alkaline phosphatase (IAP) has the ability to detoxify LPS, as well as maintain intestinal tight junction proteins and gut barrier integrity. Therefore, we hypothesized that IAP may function as a novel therapy to prevent liver fibrosis. Methods: Stool IAP activity from cirrhotic patients were determined. Common bile duct ligation (CBDL) and Carbon Tetrachloride-4 (CCl4)-induced liver fibrosis models were used in WT, IAP knockout (KO), and TLR4 KO mice supplemented with or without exogenous IAP in their drinking water. The gut barrier function and liver fibrosis markers were tested. Results: Human stool IAP activity was decreased in the setting of liver cirrhosis. In mice, IAP activity and genes expression decreased after CBDL and CCl4 exposure. Intestinal tight junction related genes and gut barrier function were impaired in both models of liver fibrosis. Oral IAP supplementation attenuated the decrease in small intestine tight junction protein gene expression and gut barrier function. Liver fibrosis markers were significantly higher in IAP KO compared to WT mice in both models, while oral IAP rescued liver fibrosis in both WT and IAP KO mice. In contrast, IAP supplementation did not attenuate fibrosis in TLR4 KO mice in either model. Conclusions: Endogenous IAP is decreased during liver fibrosis, perhaps contributing to the gut barrier dysfunction and worsening fibrosis. Oral IAP protects the gut barrier and further prevents the development of liver fibrosis via a TLR4-mediated mechanism.


Asunto(s)
Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Cirrosis Hepática/genética , Receptor Toll-Like 4/genética , Adulto , Animales , Tetracloruro de Carbono/toxicidad , Conducto Colédoco/cirugía , Modelos Animales de Enfermedad , Heces/química , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Íleon/metabolismo , Intestinos , Ligadura , Lipopolisacáridos , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Permeabilidad , Proteínas de Uniones Estrechas/genética
9.
Exp Gerontol ; 142: 111108, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33130113

RESUMEN

Age- or high fat diet (HFD)-associated renal structural changes are commonly associated with a decline in renal function. Although HFD causes injurious effects in various organs during aging, its effects on age-associated renal fibrosis have not yet been investigated. In this study, we show that a short-term HFD significantly induces renal fibrosis by causing loss of mitochondrial integrity in aged Sprague-Dawley (SD) rats. To evaluate the effects of short-term HFD intake on age-associated renal fibrosis, we administered HFD in young and aged SD rats for 15 days. Our results showed that a short-term HFD significantly increased the renal fibrosis and inflammation in aged rats. Moreover, mitochondrial integrity and the expression of fatty acid oxidation-related proteins decreased in the kidneys of the HFD-fed aged rats. Further, NRK52E renal tubular epithelial cells subjected to lipid stress by treatment with oleic acid showed a reduced amount of mitochondrial OXPHOS-related proteins. Our results suggest that short-term HFD affects mitochondrial integrity and exacerbates inflammation leading to renal fibrosis, especially in aged rats. We conclude that the mitochondrial integrity in kidney tissues is important in HFD-induced renal fibrosis development during aging.


Asunto(s)
Dieta Alta en Grasa , Enfermedades Renales , Animales , Dieta Alta en Grasa/efectos adversos , Fibrosis , Riñón/patología , Enfermedades Renales/etiología , Enfermedades Renales/patología , Ratas , Ratas Sprague-Dawley
10.
Liver Int ; 40(11): 2706-2718, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32639626

RESUMEN

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress is one of the major causes of hepatic insulin resistance through increasing de novo lipogenesis. Forkhead box O6 (FoxO6) is a transcription factor mediating insulin signalling to glucose and lipid metabolism, therefore, dysregulated FoxO6 is involved in hepatic insulin resistance. In this study, we elucidated the role of FoxO6 in ER stress-induced hepatic lipogenesis. METHODS: Hepatic ER stress responses and lipogenesis were monitored in mice overexpressed with constitutively active FoxO6 allele and FoxO6-null mice. In the in vitro study, HepG2 cells overexpressing constitutively active FoxO6 were treated with palmitate, and then alterations in ER stress and lipid metabolism were measured. RESULTS: FoxO6 activation induced hepatic lipogenesis and the expression of ER stress-inducible genes. The expression and transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ) were significantly increased in constitutively active FoxO6 allele. Interestingly, we found that the active FoxO6 physically interacted with C/EBP homologous protein (CHOP), an ER stress-inducible transcription factor, which was responsible for PPARγ expression. Palmitate treatment caused the expression of ER stress-inducible genes, which was deteriorated by FoxO6 activation in HepG2 cells. Palmitate-induced ER stress led to PPARγ expression through interactions between CHOP and FoxO6 corresponding to findings in the in vivo study. On the other hand, the expression of PPARα and ß-oxidation were decreased in constitutively active FoxO6 allele which implied that lipid catabolism is also regulated by FoxO6. CONCLUSION: Our data present significant evidence demonstrating that CHOP and FoxO6 interact to induce hepatic lipid accumulation through PPARγ expression during ER stress.


Asunto(s)
Hígado Graso , Metabolismo de los Lípidos , Animales , Estrés del Retículo Endoplásmico , Factores de Transcripción Forkhead , Células Hep G2 , Humanos , Lípidos , Ratones , Factor de Transcripción CHOP
11.
Sci Rep ; 10(1): 10284, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32555527

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Aging Dis ; 10(6): 1174-1186, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31788330

RESUMEN

Aging is associated with increased fat mass and elevated serum leptin levels (hyperleptinemia), causing proinflammation in the kidneys where it plays a primary role in the removal of endogenous leptin from the circulation. Lymphocyte-specific kinase (Lck) is a positive regulator of inflammatory signaling and a potential treatment target for age-related diseases, but its role in leptin signaling is unknown. Here, we investigated how Lck influences hyperleptinemia-induced inflammation in kidney tissues from 6- and 21-month-old rats. Results indicate that Lck expression and activation increased significantly in aged rat kidneys, especially at renal tubules. Furthermore, we identified interactions between Lck and short leptin-receptor isoforms, suggesting that Lck is a protein tyrosine kinase regulating leptin signaling. We further investigated whether increased Lck expression in renal tubular epithelial cells and macrophage infiltration are associated with leptin-induced inflammation. We then demonstrated that leptin activates Lck and proinflammatory transcription factors (STAT3 and NF-κB), while Lck knockdown modulates the expression of both transcription factors. Collectively, these data implicate that Lck leads to development of leptin-induced renal inflammation during aging. Inhibition of this protein tyrosine kinase may therefore be an appropriate therapeutic option for protection against age-related hyperleptinemia.

13.
J Biosci Bioeng ; 128(5): 613-621, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31128971

RESUMEN

Decellularized esophageal matrices are ideal scaffolds for esophageal tissue engineering. Unfortunately, in order to improve transplantation possibilities, they require modification to reduce their degradation rate and immunogenicity. To date, no modifying agent has been approved to overcome these limitations. The objective of this study was to evaluate the ability of silver nanoparticles (AgNPs) to improve the structural stability and biocompatibility of decellularized rat esophagi. AgNPs have the advantage over currently used agents in that they bind with collagen fibers in a highly ordered manner, via non-covalent binding mechanisms forming multiple binding sites, while other agents provide only two-point connections between collagen molecules. Rat esophagi were decellularized, loaded with 5 µg/mL of AgNPs (100 nm), and then treated with an immobilization-complex buffer composed of ethyl carbodiimide hydrochloride and N-hydroxysuccinimide (EDC/NHS). Then, they were evaluated in terms of ultra-structural morphology, water uptake, in vitro resistance to enzymatic and thermal degradation, indentation strength, in vitro anti-calcification, cytocompatibility with rat bone marrow derived stromal cells (rat-BMSCs), angiogenic properties, and in vivo biocompatibility, and compared to scaffolds modified using glutaraldehyde and EDC/NHS complex buffer alone. AgNP-modified scaffolds showed an improved ultrastructure, good water uptake, and considerable resistance against in vitro degradation and indentation, and a high resistance against in vitro calcification. Moreover, they were cytocompatible for allogeneic rat-BMSCs. Additionally, AgNPs did not alter the angiogenic properties of the modified scaffolds and decreased host immune responses after their subcutaneous implantation. The structural properties and biocompatibility of decellularized esophageal matrices could be improved by conjugation with AgNPs.


Asunto(s)
Esófago , Nanopartículas del Metal/química , Animales , Colágeno/química , Masculino , Células Madre Mesenquimatosas , Ratas , Ratas Sprague-Dawley , Plata/química , Ingeniería de Tejidos , Andamios del Tejido/química
14.
J Biosci Bioeng ; 128(2): 218-225, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30904455

RESUMEN

Decellularization of a whole organ is an attractive process that has been used to create 3D scaffolds structurally and micro-architecturally similar to the native one. Currently used decellularization protocols exhibit disrupted extracellular matrix (ECM) structure and denatured ECM proteins. Therefore, maintaining a balance between ECM preservation and cellular removal is a major challenge. The aim of this study was to optimize a multistep Triton X-100 based protocol (either using Triton X-100/ammonium hydroxide mixture alone or after its modification with DNase, sodium dodecyl sulfate or trypsin) that could achieve maximum decellularization with minimal liver ECM destruction suitable for subsequent organ implantation without immune rejection. Based on our findings, Triton X-100 multistep protocol was insufficient for whole liver decellularization and needed to be modified with other detergents. Among all Triton X-100 modified protocols, a Triton X-100/DNase-based one was considered the most suitable. It maintains a gradual but sufficient removal of cells to generate decellularized biocompatible liver scaffolds without any significant alteration to ECM micro- and ultra-structure.


Asunto(s)
Materiales Biocompatibles , Hígado/citología , Ingeniería de Tejidos/métodos , Animales , Detergentes/farmacología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Octoxinol/farmacología , Dodecil Sulfato de Sodio/farmacología , Tripsina/metabolismo
15.
Sci Rep ; 8(1): 7499, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760499

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) encompasses a wide spectrum of disease severity, starting from pure steatosis, leading to fatty inflammation labeled as non-alcoholic steatohepatitis (NASH), and finally fibrosis leading to cirrhosis. Activated hepatic stellate cells (HSCs) are known to contribute to fibrosis, but less is known about their function during NAFLD's early stages prior to fibrosis. We developed an ex vivo assay that cocultures primary HSCs from mouse models of liver disease with healthy hepatocytes to study their interaction. Our data indicate that chemokine Ccl5 is one of the HSC-secreted mediators in early NASH in humans and in mice fed with choline-deficient, L-amino acid defined, high fat diet. Furthermore, Ccl5 directly induces steatosis and pro-inflammatory factors in healthy hepatocytes through the receptor Ccr5. Although Ccl5 is already known to be secreted by many liver cell types including HSCs and its pro-fibrotic role well characterized, its pro-steatotic action has not been recognized until now. Similarly, the function of HSCs in fibrogenesis is widely accepted, but their pro-steatotic role has been unclear. Our result suggests that in early NASH, HSCs secrete Ccl5 which contributes to a broad array of mechanisms by which hepatic steatosis and inflammation are achieved.


Asunto(s)
Quimiocina CCL5/metabolismo , Dieta Alta en Grasa/efectos adversos , Células Estrelladas Hepáticas/citología , Hepatocitos/citología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo Condicionados/química , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Estrelladas Hepáticas/inmunología , Hepatocitos/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/inmunología
16.
Dig Dis Sci ; 62(8): 2021-2034, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28424943

RESUMEN

BACKGROUND AND AIMS: Bacterially derived factors from the gut play a major role in the activation of inflammatory pathways in the liver and in the pathogenesis of alcoholic liver disease. The intestinal brush-border enzyme intestinal alkaline phosphatase (IAP) detoxifies a variety of bacterial pro-inflammatory factors and also functions to preserve gut barrier function. The aim of this study was to investigate whether oral IAP supplementation could protect against alcohol-induced liver disease. METHODS: Mice underwent acute binge or chronic ethanol exposure to induce alcoholic liver injury and steatosis ± IAP supplementation. Liver tissue was assessed for biochemical, inflammatory, and histopathological changes. An ex vivo co-culture system was used to examine the effects of alcohol and IAP treatment in regard to the activation of hepatic stellate cells and their role in the development of alcoholic liver disease. RESULTS: Pretreatment with IAP resulted in significantly lower serum alanine aminotransferase compared to the ethanol alone group in the acute binge model. IAP treatment attenuated the development of alcohol-induced fatty liver, lowered hepatic pro-inflammatory cytokine and serum LPS levels, and prevented alcohol-induced gut barrier dysfunction. Finally, IAP ameliorated the activation of hepatic stellate cells and prevented their lipogenic effect on hepatocytes. CONCLUSIONS: IAP treatment protected mice from alcohol-induced hepatotoxicity and steatosis. Oral IAP supplementation could represent a novel therapy to prevent alcoholic-related liver disease in humans.


Asunto(s)
Fosfatasa Alcalina/administración & dosificación , Suplementos Dietéticos , Hígado Graso Alcohólico/prevención & control , Alanina Transaminasa/sangre , Animales , Técnicas de Cocultivo , Citocinas/análisis , Citocinas/sangre , Etanol , Hígado Graso Alcohólico/sangre , Hígado Graso Alcohólico/enzimología , Femenino , Células Estrelladas Hepáticas/enzimología , Hepatocitos/enzimología , Intestinos/enzimología , Lipogénesis , Lipopolisacáridos/sangre , Hígado/química , Ratones , Ratones Endogámicos C57BL , Permeabilidad , Activador de Tejido Plasminógeno , Triglicéridos/análisis
17.
Cell Rep ; 17(2): 353-365, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705785

RESUMEN

Long noncoding RNAs (lncRNAs) exhibit diverse functions, including regulation of development. Here, we combine genome-wide mapping of SMAD3 occupancy with expression analysis to identify lncRNAs induced by activin signaling during endoderm differentiation of human embryonic stem cells (hESCs). We find that DIGIT is divergent to Goosecoid (GSC) and expressed during endoderm differentiation. Deletion of the SMAD3-occupied enhancer proximal to DIGIT inhibits DIGIT and GSC expression and definitive endoderm differentiation. Disruption of the gene encoding DIGIT and depletion of the DIGIT transcript reveal that DIGIT is required for definitive endoderm differentiation. In addition, we identify the mouse ortholog of DIGIT and show that it is expressed during development and promotes definitive endoderm differentiation of mouse ESCs. DIGIT regulates GSC in trans, and activation of endogenous GSC expression is sufficient to rescue definitive endoderm differentiation in DIGIT-deficient hESCs. Our study defines DIGIT as a conserved noncoding developmental regulator of definitive endoderm.


Asunto(s)
Diferenciación Celular/genética , Proteína Goosecoide/genética , ARN Largo no Codificante/genética , Proteína smad3/genética , Animales , Endodermo/crecimiento & desarrollo , Endodermo/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Transducción de Señal
18.
Tissue Eng Part A ; 22(5-6): 449-60, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26801816

RESUMEN

Liver transplantation is the last resort for liver failure patients. However, due to the shortage of donor organs, bioengineered liver generated from decellularized whole liver scaffolds and induced pluripotent stem cell (iPSC)-derived hepatocytes (iPSC-Heps) is being studied as an alternative approach to treat liver disease. Nevertheless, there has been no report on both the interaction of iPSC-Heps with a liver extracellular matrix (ECM) and the analysis of recellularized iPSC-Heps into the whole liver scaffolds. In this study, we produced porcine iPSC-Heps, which strongly expressed the hepatic markers α-fetoprotein and albumin and exhibited hepatic functionalities, including glycogen storage, lipid accumulation, low-density lipoprotein uptake, and indocyanine green metabolism. Supplementation of ECM from porcine decellularized liver containing liver-derived growth factors stimulated the albumin expression of porcine iPSC-Heps during differentiation procedures. The iPSC-Heps were reseeded into decellularized liver scaffolds, and the recellularized liver was cultured using a continuous perfusion system. The recellularized liver scaffolds were transplanted into rats for a short term, and the grafts expressed hepatocyte markers and did not rupture. These results provide a foundation for development of bioengineered liver using stem cell and decellularized scaffolds.


Asunto(s)
Bioingeniería/métodos , Linaje de la Célula , Matriz Extracelular/metabolismo , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Trasplante de Hígado , Hígado/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones Endogámicos BALB C , Ratones Desnudos , Ratas Sprague-Dawley , Sus scrofa , Andamios del Tejido/química
19.
Biochem Biophys Res Commun ; 426(2): 183-9, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22925886

RESUMEN

MicroRNAs are known to contribute significantly to stem cell phenotype by post-transcriptionally regulating gene expression. Most of our knowledge of microRNAs comes from the study of canonical microRNAs that require two sequential cleavages by the Drosha/Dgcr8 heterodimer and Dicer to generate mature products. In contrast, non-canonical microRNAs bypass the cleavage by the Drosha/Dgcr8 heterodimer within the nucleus but still require cytoplasmic cleavage by Dicer. The function of non-canonical microRNAs in embryonic stem cells (ESCs) remains obscure. It has been hypothesized that non-canonical microRNAs have important roles in ESCs based upon the phenotypes of ESC lines that lack these specific classes of microRNAs; Dicer-deficient ESCs lacking both canonical and non-canonical microRNAs have much more severe proliferation defect than Dgcr8-deficient ESCs lacking only canonical microRNAs. Using these cell lines, we identified two non-canonical microRNAs, miR-320 and miR-702, that promote proliferation of Dgcr8-deficient ESCs by releasing them from G1 arrest. This is accomplished by targeting the 3'-untranslated regions of the cell cycle inhibitors p57 and p21 and thereby inhibiting their expression. This is the first report of the crucial role of non-canonical microRNAs in ESCs.


Asunto(s)
Proliferación Celular , Células Madre Embrionarias/fisiología , MicroARNs/metabolismo , Animales , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , ARN Helicasas DEAD-box/genética , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiología , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Proteínas/genética , Proteínas de Unión al ARN , Ribonucleasa III/genética
20.
PLoS One ; 7(6): e39239, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737231

RESUMEN

MicroRNAs play a pivotal role in cellular maintenance, proliferation, and differentiation. They have also been implicated to play a key role in disease pathogenesis, and more recently, cellular reprogramming. Certain microRNA clusters can enhance or even directly induce reprogramming, while repressing key proteins involved in microRNA processing decreases reprogramming efficiency. Although microRNAs clearly play important roles in cellular reprogramming, it remains unknown whether microRNAs are absolutely necessary. We endeavored to answer this fundamental question by attempting to reprogram Dicer-null mouse embryonic fibroblasts (MEFs) that lack almost all functional microRNAs using a defined set of transcription factors. Transduction of reprogramming factors using either lentiviral or piggyBac transposon vector into two, independently derived lines of Dicer-null MEFs failed to produce cells resembling embryonic stem cells (ESCs). However, expression of human Dicer in the Dicer-null MEFs restored their reprogramming potential. Our study demonstrates for the first time that microRNAs are indispensable for dedifferentiation reprogramming.


Asunto(s)
Reprogramación Celular , ARN Helicasas DEAD-box/genética , Fibroblastos/citología , Regulación de la Expresión Génica , MicroARNs/genética , Ribonucleasa III/genética , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , ARN Helicasas DEAD-box/fisiología , Células Madre Embrionarias/citología , Fibroblastos/metabolismo , Vectores Genéticos , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/metabolismo , Ribonucleasa III/fisiología , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA