Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Sci Biotechnol ; 32(12): 1719-1727, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37780594

RESUMEN

The emergence and spread of antibiotic-resistant pathogenic bacteria have necessitated finding new control alternatives. Under these circumstances, lytic bacteriophages offer a viable and promising option. This review focuses on Vibrio-infecting bacteriophages and the characteristics that make them suitable for application in the food and aquaculture industries. Bacteria, particularly Vibrio spp., can produce biofilms under stress conditions. Therefore, this review summarizes several anti-biofilm mechanisms that phages have, such as stimulating the host bacteria to produce biofilm-degrading enzymes, utilizing tail depolymerases, and penetrating matured biofilms through water channels. Additionally, the advantages of bacteriophages over antibiotics, such as a lower probability of developing resistance and the ability to infect dormant cells, are discussed. Finally, this review presents future research prospects related to further utilization of phages in diverse fields.

2.
J Agric Food Chem ; 71(39): 14379-14389, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37737871

RESUMEN

Bacillus licheniformis has been widely utilized in the food industry as well as various agricultural industries. In particular, it is a main microorganism of fermented soybeans. In this study, the changes of the metabolome and transcriptome of B. licheniformis KACC15844, which had been isolated from fermented soybeans, were investigated depending on alkaline pH (BP) and a high salt concentration (BS) using an integrated-omics technology, focusing on leucine metabolism. Overall, carbohydrate (glycolysis, sugar transport, and overflow) and amino acid (proline, glycine betaine, and serine) metabolisms were strongly associated with BS, while fatty acid metabolism, malate utilization, and branched-chain amino acid-derived volatiles were closely related to BP, in both gene and metabolic expressions. In particular, in leucine metabolism, the formation of 3-methylbutanoic acid, which has strong cheesy odor notes, was markedly increased in BP compared to the other samples. This study provided information on how specific culture conditions can affect gene expressions and metabolite formations in B. licheniformis using an integrated-omics approach.


Asunto(s)
Bacillus licheniformis , Alimentos Fermentados , Bacillus licheniformis/genética , Transcriptoma , Glycine max/genética , Glycine max/metabolismo , Presión Osmótica , Leucina/metabolismo , Concentración de Iones de Hidrógeno
3.
Nucleic Acids Res ; 51(18): 10026-10040, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37650645

RESUMEN

Thermococcus onnurineus NA1, a hyperthermophilic carboxydotrophic archaeon, produces H2 through CO oxidation catalyzed by proteins encoded in a carbon monoxide dehydrogenase (CODH) gene cluster. TON_1525 with a DNA-binding helix-turn-helix (HTH) motif is a putative repressor regulating the transcriptional expression of the codh gene cluster. The T55I mutation in TON_1525 led to enhanced H2 production accompanied by the increased expression of genes in the codh cluster. Here, TON_1525 was demonstrated to be a dimer. Monomeric TON_1525 adopts a novel 'eighth note' symbol-like fold (referred to as 'eighth note' fold regulator, EnfR), and the dimerization mode of EnfR is unique in that it has no resemblance to structures in the Protein Data Bank. According to footprinting and gel shift assays, dimeric EnfR binds to a 36-bp pseudo-palindromic inverted repeat in the promoter region of the codh gene cluster, which is supported by an in silico EnfR/DNA complex model and mutational studies revealing the implication of N-terminal loops as well as HTH motifs in DNA recognition. The DNA-binding affinity of the T55I mutant was lowered by ∼15-fold, for which the conformational change of N-terminal loops is responsible. In addition, transcriptome analysis suggested that EnfR could regulate diverse metabolic processes besides H2 production.

4.
J Microbiol Biotechnol ; 33(9): 1162-1169, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37415086

RESUMEN

16S rRNA short amplicon sequencing-based microbiota profiling has been thought of and suggested as a feasible method to assess food safety. However, even if a comprehensive microbial information can be obtained by microbiota profiling, it would not be necessarily sufficient for all circumstances. To prove this, the feasibility of the most widely used V3-V4 amplicon sequencing method for food safety assessment was examined here. We designed a pathogen (Vibrio parahaemolyticus) contamination and/or V. parahaemolyticus-specific phage treatment model of raw oysters under improper storage temperature and monitored their microbial structure changes. The samples stored at refrigerator temperature (negative control, NC) and those that were stored at room temperature without any treatment (no treatment, NT) were included as control groups. The profiling results revealed that no statistical difference exists between the NT group and the pathogen spiked- and/or phage treated-groups even when the bacterial composition was compared at the possible lowest-rank taxa, family/genus level. In the beta-diversity analysis, all the samples except the NC group formed one distinct cluster. Notably, the samples with pathogen and/or phage addition did not form each cluster even though the enumerated number of V. parahaemolyticus in those samples were extremely different. These discrepant results indicate that the feasibility of 16S rRNA short amplicon sequencing should not be overgeneralized in microbiological safety assessment of food samples, such as raw oyster.


Asunto(s)
Bacteriófagos , Microbiota , Ostreidae , Animales , ARN Ribosómico 16S/genética , Estudios de Factibilidad , Microbiota/genética , Alimentos Marinos , Ostreidae/genética , Ostreidae/microbiología , Bacteriófagos/genética
5.
J Microbiol ; 61(4): 369-377, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36972004

RESUMEN

Sialic acids consist of nine-carbon keto sugars that are commonly found at the terminal end of mucins. This positional feature of sialic acids contributes to host cell interactions but is also exploited by some pathogenic bacteria in evasion of host immune system. Moreover, many commensals and pathogens use sialic acids as an alternative energy source to survive within the mucus-covered host environments, such as the intestine, vagina, and oral cavity. Among the various biological events mediated by sialic acids, this review will focus on the processes necessary for the catabolic utilization of sialic acid in bacteria. First of all, transportation of sialic acid should be preceded before its catabolism. There are four types of transporters that are used for sialic acid uptake; the major facilitator superfamily (MFS), the tripartite ATP-independent periplasmic C4-dicarboxilate (TRAP) multicomponent transport system, the ATP binding cassette (ABC) transporter, and the sodium solute symporter (SSS). After being moved by these transporters, sialic acid is degraded into an intermediate of glycolysis through the well-conserved catabolic pathway. The genes encoding the catabolic enzymes and transporters are clustered into an operon(s), and their expression is tightly controlled by specific transcriptional regulators. In addition to these mechanisms, we will cover some researches about sialic acid utilization by oral pathogens.


Asunto(s)
Proteínas Bacterianas , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/metabolismo , Proteínas Bacterianas/genética , Bacterias/genética , Bacterias/metabolismo , Ácidos Siálicos/metabolismo , Proteínas de Transporte de Membrana/genética , Adenosina Trifosfato/metabolismo
6.
J Microbiol Biotechnol ; 33(3): 329-338, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36734123

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that produces attaching and effacing lesions on the large intestine and causes hemorrhagic colitis. It is primarily transmitted through the consumption of contaminated meat or fresh produce. Similar to other bacterial pathogens, antibiotic resistance is of concern for EHEC. Furthermore, since the production of Shiga toxin by this pathogen is enhanced after antibiotic treatment, alternative agents that control EHEC are necessary. This study aimed to discover alternative treatments that target virulence factors and reduce EHEC toxicity. The locus of enterocyte effacement (LEE) is essential for EHEC attachment to host cells and virulence, and most of the LEE genes are positively regulated by the transcriptional regulator, Ler. GrlA protein, a transcriptional activator of ler, is thus a potential target for virulence inhibitors of EHEC. To identify the GrlA inhibitors, an in vivo high-throughput screening (HTS) system consisting of a GrlA-expressing plasmid and a reporter plasmid was constructed. Since the reporter luminescence gene was fused to the ler promoter, the bioluminescence would decrease if inhibitors affected the GrlA. By screening 8,201 compounds from the Korea Chemical Bank, we identified a novel GrlA inhibitor named Grlactin [3-[(2,4-dichlorophenoxy)methyl]-4-(3-methylbut-2-en-1-yl)-4,5-dihydro-1,2,4-oxadiazol-5-one], which suppresses the expression of LEE genes. Grlactin significantly diminished the adhesion of EHEC strain EDL933 to human epithelial cells without inhibiting bacterial growth. These findings suggest that the developed screening system was effective at identifying GrlA inhibitors, and Grlactin has potential for use as a novel anti-adhesion agent for EHEC while reducing the incidence of resistance.


Asunto(s)
Escherichia coli O157 , Proteínas de Escherichia coli , Humanos , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Transactivadores/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas , Regulación Bacteriana de la Expresión Génica
7.
Nat Commun ; 13(1): 4846, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35978022

RESUMEN

V. vulnificus-infected patients suffer from hemolytic anemia and circulatory lesions, often accompanied by venous thrombosis. However, the pathophysiological mechanism of venous thrombosis associated with V. vulnificus infection remains largely unknown. Herein, V. vulnificus infection at the sub-hemolytic level induced shape change of human red blood cells (RBCs) accompanied by phosphatidylserine exposure, and microvesicle generation, leading to the procoagulant activation of RBCs and ultimately, acquisition of prothrombotic activity. Of note, V. vulnificus exposed to RBCs substantially upregulated the rtxA gene encoding multifunctional autoprocessing repeats-in-toxin (MARTX) toxin. Mutant studies showed that V. vulnificus-induced RBC procoagulant activity was due to the pore forming region of the MARTX toxin causing intracellular Ca2+ influx in RBCs. In a rat venous thrombosis model triggered by tissue factor and stasis, the V. vulnificus wild type increased thrombosis while the ΔrtxA mutant failed to increase thrombosis, confirming that V. vulnificus induces thrombosis through the procoagulant activation of RBCs via the mediation of the MARTX toxin.


Asunto(s)
Toxinas Bacterianas , Trombosis , Vibrio vulnificus , Animales , Toxinas Bacterianas/genética , Eritrocitos , Humanos , Fosfatidilserinas , Ratas , Trombosis/genética , Vibrio vulnificus/genética
8.
J Microbiol ; 60(2): 224-233, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35102528

RESUMEN

Opportunistic pathogen Vibrio vulnificus causes severe systemic infection in humans with high mortality. Although multiple exotoxins have been characterized in V. vulnificus, their interactions and potential synergistic roles in pathogen-induced host cell death have not been investigated previously. By employing a series of multiple exotoxin deletion mutants, we investigated whether specific exotoxins of the pathogen functioned together to achieve severe and rapid necrotic cell death. Human epithelial cells treated with V. vulnificus with a plpA deletion background exhibited an unusually prolonged cell blebbing, suggesting the importance of PlpA, a phospholipase A2, in rapid necrotic cell death by this pathogen. Additional deletion of the rtxA gene encoding the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin did not result in necrotic cell blebs. However, if the rtxA gene was engineered to produce an effector-free MARTX toxin, the cell blebbing was observed, indicating that the pore forming activity of the MARTX toxin is sufficient, but the MARTX toxin effector domains are not necessary, for the blebbing. When a recombinant PlpA was treated on the blebbed cells, the blebs were completely disrupted. Consistent with this, MARTX toxin-pendent rapid release of cytosolic lactate dehydrogenase was significantly delayed in the plpA deletion background. Mutations in other exotoxins such as elastase, cytolysin/hemolysin, and/or extracellular metalloprotease did not affect the bleb formation or disruption. Together, these findings indicate that the pore forming MARTX toxin and the phospholipase A2, PlpA, cooperate sequentially to achieve rapid necrotic cell death by inducing cell blebbing and disrupting the blebs, respectively.


Asunto(s)
Toxinas Bacterianas/genética , Exotoxinas/genética , Fosfolipasas A2/genética , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , Células 3T3-L1 , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Muerte Celular , Exotoxinas/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Ratones , Fosfolipasas A2/metabolismo , Eliminación de Secuencia , Vibriosis/microbiología , Vibrio vulnificus/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
9.
Food Res Int ; 150(Pt A): 110779, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865794

RESUMEN

The opportunistic pathogen V. parahaemolyticus is a major causative agent for seafood-borne illness worldwide. It also causes severe vibriosis in aquaculture animals, affecting seafood production with huge economic loss. These issues are getting worse due to the current global warming in oceans, spread of antibiotic resistance, and changes in consumer preference toward ready-to-eat (RTE) food items including seafood. To answer the urgent need for sustainable biocontrol agents against V. parahaemolyticus, we isolated and characterized a novel lytic bacteriophage VPT02 from market oyster. VPT02 lysed antibiotic resistant V. parahaemolyticus strains including FORC_023. Moreover, it exhibited notable properties as a biocontrol agent suitable for seafood-related settings, like short eclipse/latent periods, high burst size, broad thermal and pH stability, and no toxin/antibiotic resistance genes in the genome. Further comparative genomic analysis with the previously reported homologue phage pVp-1 revealed that VPT02 additionally possesses genes related to the nucleotide scavenging pathway, presumably enabling the phage to propagate quickly. Consistent with its strong in vitro bacteriolytic activity, treatment of only a small quantity of VPT02 (multiplicity of infection of 10) significantly increased the survival rate of V. parahaemolyticus-infected brine shrimp (from 16.7% to 46.7%). When applied to RTE raw fish flesh slices, the same quantity of VPT02 achieved up to 3.9 log reduction of spiked V. parahaemolyticus compared with the phage untreated control. Taken together, these results suggest that VPT02 may be a sustainable anti-V. parahaemolyticus agent useful in seafood-related settings including for RTE items.


Asunto(s)
Bacteriófagos , Ostreidae , Vibriosis , Vibrio parahaemolyticus , Animales , Bacteriófagos/genética , Alimentos Marinos
10.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33986113

RESUMEN

Instead of conventional serotyping and virulence gene combination methods, methods have been developed to evaluate the pathogenic potential of newly emerging pathogens. Among them, the machine learning (ML)-based method using whole-genome sequencing (WGS) data are getting attention because of the recent advances in ML algorithms and sequencing technologies. Here, we developed various ML models to predict the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) isolates using their WGS data. The input dataset for the ML models was generated using distinct gene repertoires from positive (pathogenic) and negative (nonpathogenic) control groups in which each STEC isolate was designated based on the source attribution, the relative risk potential of the isolation sources. Among the various ML models examined, a model using the support vector machine (SVM) algorithm, the SVM model, discriminated between the two control groups most accurately. The SVM model successfully predicted the pathogenicity of the isolates from the major sources of STEC outbreaks, the isolates with the history of outbreaks, and the isolates that cannot be assessed by conventional methods. Furthermore, the SVM model effectively differentiated the pathogenic potentials of the isolates at a finer resolution. Permutation importance analyses of the input dataset further revealed the genes important for the estimation, proposing the genes potentially essential for the pathogenicity of STEC. Altogether, these results suggest that the SVM model is a more reliable and broadly applicable method to evaluate the pathogenic potential of STEC isolates compared with conventional methods.


Asunto(s)
Proteínas de Escherichia coli/genética , Aprendizaje Automático , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/genética , Máquina de Vectores de Soporte , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Humanos , Curva ROC , Reproducibilidad de los Resultados , Toxina Shiga II/metabolismo , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/patogenicidad , Virulencia/genética , Secuenciación Completa del Genoma/métodos
11.
J Biol Chem ; 296: 100777, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33992647

RESUMEN

Opportunistic bacteria strategically dampen their virulence to allow them to survive and propagate in hosts. However, the molecular mechanisms underlying virulence control are not clearly understood. Here, we found that the opportunistic pathogen Vibrio vulnificus biotype 3, which caused an outbreak of severe wound and intestinal infections associated with farmed tilapia, secretes significantly less virulent multifunctional autoprocessing repeats-in-toxin (MARTX) toxin, which is the most critical virulence factor in other clinical Vibrio strains. The biotype 3 MARTX toxin contains a cysteine protease domain (CPD) evolutionarily retaining a unique autocleavage site and a distinct ß-flap region. CPD autoproteolytic activity is attenuated following its autocleavage because of the ß-flap region. This ß-flap blocks the active site, disabling further autoproteolytic processing and release of the modularly structured effector domains within the toxin. Expression of this altered CPD consequently results in attenuated release of effectors by the toxin and significantly reduces the virulence of V. vulnificus biotype 3 in cells and in mice. Bioinformatic analysis revealed that this virulence mechanism is shared in all biotype 3 strains. Thus, these data provide new insights into the mechanisms by which opportunistic bacteria persist in an environmental reservoir, prolonging the potential to cause outbreaks.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Vibriosis/metabolismo , Vibrio vulnificus/patogenicidad , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Ratones , Modelos Moleculares , Vibrio vulnificus/fisiología , Factores de Virulencia/química
12.
mSphere ; 5(4)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32817457

RESUMEN

To understand toxin-stimulated host-pathogen interactions, we performed dual-transcriptome sequencing experiments using human epithelial (HT-29) and differentiated THP-1 (dTHP-1) immune cells infected with the sepsis-causing pathogen Vibrio vulnificus (either the wild-type [WT] pathogen or a multifunctional-autoprocessing repeats-in-toxin [MARTX] toxin-deficient strain). Gene set enrichment analyses revealed MARTX toxin-dependent responses, including negative regulation of extracellular related kinase 1 (ERK1) and ERK2 (ERK1/2) signaling and cell cycle regulation in HT-29 and dTHP-1 cells, respectively. Further analysis of the expression of immune-related genes suggested that the MARTX toxin dampens immune responses in gut epithelial cells but accelerates inflammation and nuclear factor κB (NF-κB) signaling in immune cells. With respect to the pathogen, siderophore biosynthesis genes were significantly more highly expressed in WT V. vulnificus than in the MARTX toxin-deficient mutant upon infection of dTHP-1 cells. Consistent with these results, iron homeostasis genes that limit iron levels for invading pathogens were overexpressed in WT V. vulnificus-infected dTHP-1 cells. Taken together, these results suggest that MARTX toxin regulates host inflammatory responses during V. vulnificus infection while also countering host defense mechanisms such as iron limitation.IMPORTANCEV. vulnificus is an opportunistic human pathogen that can cause life-threatening sepsis in immunocompromised patients via seafood poisoning or wound infection. Among the toxic substances produced by this pathogen, the MARTX toxin greatly contributes to disease progression by promoting the dysfunction and death of host cells, which allows the bacteria to disseminate and colonize the host. In response to this, host cells mount a counterattack against the invaders by upregulating various defense genes. In this study, the gene expression profiles of both host cells and V. vulnificus were analyzed by RNA sequencing to gain a comprehensive understanding of host-pathogen interactions. Our results suggest that V. vulnificus uses the MARTX toxin to subvert host cell immune responses as well as to oppose host counterattacks such as iron limitation.


Asunto(s)
Toxinas Bacterianas/metabolismo , Células Epiteliales/microbiología , Interacciones Huésped-Patógeno/genética , Vibrio vulnificus/genética , Toxinas Bacterianas/genética , Perfilación de la Expresión Génica , Células HT29 , Interacciones Huésped-Patógeno/inmunología , Humanos , Hierro/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Sideróforos/genética , Células THP-1 , Vibrio vulnificus/patogenicidad , Factores de Virulencia/genética
13.
Toxins (Basel) ; 12(9)2020 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842612

RESUMEN

After invading a host, bacterial pathogens secrete diverse protein toxins to disrupt host defense systems. To ensure successful infection, however, pathogens must precisely regulate the expression of those exotoxins because uncontrolled toxin production squanders energy. Furthermore, inappropriate toxin secretion can trigger host immune responses that are detrimental to the invading pathogens. Therefore, bacterial pathogens use diverse transcriptional regulators to accurately regulate multiple exotoxin genes based on spatiotemporal conditions. This review covers three major exotoxins in pathogenic Vibrio species and their transcriptional regulation systems. When Vibrio encounters a host, genes encoding cytolysin/hemolysin, multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin, and secreted phospholipases are coordinately regulated by the transcriptional regulator HlyU. At the same time, however, they are distinctly controlled by a variety of other transcriptional regulators. How this coordinated but distinct regulation of exotoxins makes Vibrio species successful pathogens? In addition, anti-virulence strategies that target the coordinating master regulator HlyU and related future research directions are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Vibrio/metabolismo , Animales , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Exotoxinas/genética , Humanos , Transactivadores/genética , Factores de Transcripción/genética , Vibrio/genética
14.
mBio ; 11(4)2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32723914

RESUMEN

A multifunctional autoprocessing repeats-in-toxin (MARTX) toxin plays an essential role in the virulence of many pathogens, including a fulminating human pathogen Vibrio vulnificus H-NS and HlyU repress and derepress expression of the MARTX toxin gene rtxA in V. vulnificus, respectively. However, little is known about other regulatory proteins and environmental signals involved in rtxA regulation. In this study, we found that a leucine-responsive regulatory protein (Lrp) activates rtxA by binding directly and specifically to the rtxA promoter, P rtxA Phased hypersensitivity resulting from DNase I cleavage of the P rtxA regulatory region suggests that Lrp probably induces DNA bending in P rtxA Lrp activates P rtxA independently of H-NS and HlyU, and leucine inhibits Lrp binding to P rtxA and reduces the Lrp-mediated activation. Furthermore, a cyclic AMP receptor protein (CRP) represses P rtxA , and exogenous glucose relieves the CRP-mediated repression. Biochemical and mutational analyses demonstrated that CRP binds directly and specifically to the upstream region of P rtxA , which presumably alters the DNA conformation in P rtxA and thus represses rtxA Moreover, CRP represses expression of lrp and hlyU by binding directly to their upstream regions, forming coherent feed-forward loops with Lrp and HlyU. In conclusion, expression of rtxA is controlled by a regulatory network comprising CRP, Lrp, H-NS, and HlyU in response to changes in host environmental signals such as leucine and glucose. This collaborative regulation enables the elaborate expression of rtxA, thereby enhancing the fitness and pathogenesis of V. vulnificus during the course of infection.IMPORTANCE A MARTX toxin, RtxA, is an essential virulence factor of many pathogens, including Vibrio species. H-NS and HlyU repress and derepress, respectively, rtxA expression of a life-threatening pathogen, Vibrio vulnificus We found that Lrp directly activates rtxA independently of H-NS and HlyU, and leucine inhibits the Lrp-mediated activation of rtxA Furthermore, we demonstrated that CRP represses rtxA but derepresses in the presence of exogenous glucose. CRP represses rtxA not only directly by binding to upstream of rtxA but also indirectly by repressing lrp and hlyU This is the first report of a regulatory network comprising CRP, Lrp, H-NS, and HlyU, which coordinates the rtxA expression in response to environmental signals such as leucine and glucose during infection. This elaborate regulatory network will enhance the fitness of V. vulnificus and contribute to its successful infection within the host.


Asunto(s)
Toxinas Bacterianas/genética , Proteína Receptora de AMP Cíclico/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Vibrio vulnificus/genética , Proteína Receptora de AMP Cíclico/metabolismo , Ambiente , Glucosa/farmacología , Humanos , Proteína Reguladora de Respuesta a la Leucina/genética , Proteína Reguladora de Respuesta a la Leucina/metabolismo , Regiones Promotoras Genéticas , Vibriosis/microbiología , Vibrio vulnificus/efectos de los fármacos , Vibrio vulnificus/patogenicidad , Virulencia , Factores de Virulencia
15.
Proc Natl Acad Sci U S A ; 116(36): 18031-18040, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427506

RESUMEN

Upon invading target cells, multifunctional autoprocessing repeats-in-toxin (MARTX) toxins secreted by bacterial pathogens release their disease-related modularly structured effector domains. However, it is unclear how a diverse repertoire of effector domains within these toxins are processed and activated. Here, we report that Makes caterpillars floppy-like effector (MCF)-containing MARTX toxins require ubiquitous ADP-ribosylation factor (ARF) proteins for processing and activation of intermediate effector modules, which localize in different subcellular compartments following limited processing of holo effector modules by the internal cysteine protease. Effector domains structured tandemly with MCF in intermediate modules become disengaged and fully activated by MCF, which aggressively interacts with ARF proteins present at the same location as intermediate modules and is converted allosterically into a catalytically competent protease. MCF-mediated effector processing leads ultimately to severe virulence in mice via an MCF-mediated ARF switching mechanism across subcellular compartments. This work provides insight into how bacteria take advantage of host systems to induce systemic pathogenicity.


Asunto(s)
Factores de Ribosilacion-ADP , ADP-Ribosilación , Toxinas Bacterianas , Vibrio vulnificus , Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/metabolismo , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Dominios Proteicos , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , Vibrio vulnificus/patogenicidad
16.
Sci Rep ; 9(1): 4346, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867441

RESUMEN

Increasing antibiotic resistance has led to the development of new strategies to combat bacterial infection. Anti-virulence strategies that impair virulence of bacterial pathogens are one of the novel approaches with less selective pressure for developing resistance than traditional strategies that impede viability. In this study, a small molecule CM14 [N-(4-oxo-4H-thieno[3,4-c]chromen-3-yl)-3-phenylprop-2-ynamide] that inhibits the activity of HlyU, a transcriptional regulator essential for the virulence of the fulminating human pathogen Vibrio vulnificus, has been identified. Without affecting bacterial growth or triggering the host cell death, CM14 reduces HlyU-dependent expression of virulence genes in V. vulnificus. In addition to the decreased hemolysis of human erythrocytes, CM14 impedes host cell rounding and lysis caused by V. vulnificus. Notably, CM14 significantly enhances survival of mice infected with V. vulnificus by alleviating hepatic and renal dysfunction and systemic inflammation. Biochemical, mass spectrometric, and mutational analyses revealed that CM14 inhibits HlyU from binding to target DNA by covalently modifying Cys30. Remarkably, CM14 decreases the expression of various virulence genes of other Vibrio species and thus attenuates their virulence phenotypes. Together, this molecule could be an anti-virulence agent against HlyU-harboring Vibrio species with a low selective pressure for the emergence of resistance.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Vibrio vulnificus/patogenicidad , Virulencia/efectos de los fármacos , Animales , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Ratones , Vibrio vulnificus/genética , Vibrio vulnificus/crecimiento & desarrollo , Factores de Virulencia/genética
17.
Toxins (Basel) ; 10(12)2018 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-30513802

RESUMEN

Many Gram-negative bacterial pathogens directly deliver numerous effector proteins from the bacterium to the host cell, thereby altering the target cell physiology. The already well-characterized effector delivery systems are type III, type IV, and type VI secretion systems. Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are another effector delivery platform employed by some genera of Gram-negative bacteria. These single polypeptide exotoxins possess up to five effector domains in a modular fashion in their central regions. Upon binding to the host cell plasma membrane, MARTX toxins form a pore using amino- and carboxyl-terminal repeat-containing arms and translocate the effector domains into the cells. Consequently, MARTX toxins affect the integrity of the host cells and often induce cell death. Thus, they have been characterized as crucial virulence factors of certain human pathogens. This review covers how each of the MARTX toxin effector domains exhibits cytopathic and/or cytotoxic activities in cells, with their structural features revealed recently. In addition, future directions for the comprehensive understanding of MARTX toxin-mediated pathogenesis are discussed.


Asunto(s)
Toxinas Bacterianas/química , Dominios Proteicos , Animales , Autofagia , Toxinas Bacterianas/toxicidad , Citoesqueleto , Endosomas , Aparato de Golgi , Humanos , Transporte de Proteínas
18.
J Biol Chem ; 293(47): 18110-18122, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30282804

RESUMEN

Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are secreted by Gram-negative bacteria and function as primary virulence-promoting macromolecules that deliver multiple cytopathic and cytotoxic effector domains into the host cytoplasm. Among these effectors, Ras/Rap1-specific endopeptidase (RRSP) catalyzes the sequence-specific cleavage of the Switch I region of the cellular substrates Ras and Rap1 that are crucial for host innate immune defenses during infection. To dissect the molecular basis underpinning RRSP-mediated substrate inactivation, we determined the crystal structure of an RRSP from the sepsis-causing bacterial pathogen Vibrio vulnificus (VvRRSP). Structural and biochemical analyses revealed that VvRRSP is a metal-independent TIKI family endopeptidase composed of an N-terminal membrane-localization and substrate-recruitment domain (N lobe) connected via an inter-lobe linker to the C-terminal active site-coordinating core ß-sheet-containing domain (C lobe). Structure-based mutagenesis identified the 2His/2Glu catalytic residues in the core catalytic domain that are shared with other TIKI family enzymes and that are essential for Ras processing. In vitro KRas cleavage assays disclosed that deleting the N lobe in VvRRSP causes complete loss of enzymatic activity. Endogenous Ras cleavage assays combined with confocal microscopy analysis of HEK293T cells indicated that the N lobe functions both in membrane localization via the first α-helix and in substrate assimilation by altering the functional conformation of the C lobe to facilitate recruitment of cellular substrates. Collectively, these results indicate that RRSP is a critical virulence factor that robustly inactivates Ras and Rap1 and augments the pathogenicity of invading bacteria via the combined effects of its N and C lobes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sepsis/enzimología , Sepsis/microbiología , Vibrio vulnificus/enzimología , Proteínas de Unión al GTP rap1/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas , Endopeptidasas/química , Endopeptidasas/genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Dominios Proteicos , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Sepsis/genética , Vibrio vulnificus/química , Vibrio vulnificus/genética , Proteínas de Unión al GTP rap1/química , Proteínas de Unión al GTP rap1/genética
19.
mBio ; 9(1)2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382732

RESUMEN

Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus, and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp (Artemia franciscana). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures.IMPORTANCE Yields of aquaculture, such as penaeid shrimp hatcheries, are greatly affected by vibriosis, a disease caused by pathogenic Vibrio infections. Since bacterial cell-to-cell communication, known as quorum sensing (QS), regulates pathogenesis of Vibrio species in marine environments, QS inhibitors have attracted attention as alternatives to conventional antibiotics in aquatic settings. Here, we used target-based high-throughput screening to identify QStatin, a potent and selective inhibitor of V. harveyi LuxR homologues, which are well-conserved master QS regulators in Vibrio species. Structural and biochemical analyses revealed that QStatin binds tightly to a putative ligand-binding pocket on SmcR, the LuxR homologue in V. vulnificus, and affects expression of QS-regulated genes. Remarkably, QStatin attenuated diverse QS-regulated phenotypes in various Vibrio species, including pathogenesis against brine shrimp, with no impact on bacterial viability. Taken together, the results suggest that QStatin may be a sustainable antivibriosis agent useful in aquacultures.


Asunto(s)
Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , Vibrio/efectos de los fármacos , Cristalografía por Rayos X , Perfilación de la Expresión Génica , Unión Proteica , Proteínas Represoras/química , Transactivadores/química
20.
J Biol Chem ; 292(41): 17129-17143, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28855258

RESUMEN

The marine bacterium Vibrio vulnificus causes food-borne diseases, which may lead to life-threatening septicemia in some individuals. Therefore, identifying virulence factors in V. vulnificus is of high priority. We performed a transcriptome analysis on V. vulnificus after infection of human intestinal HT29-methotrexate cells and found induction of plpA, encoding a putative phospholipase, VvPlpA. Bioinformatics, biochemical, and genetic analyses demonstrated that VvPlpA is a phospholipase A2 secreted in a type II secretion system-dependent manner. Compared with the wild type, the plpA mutant exhibited reduced mortality, systemic infection, and inflammation in mice as well as low cytotoxicity toward the human epithelial INT-407 cells. Moreover, plpA mutation attenuated the release of actin and cytosolic cyclophilin A from INT-407 cells, indicating that VvPlpA is a virulence factor essential for causing lysis and necrotic death of the epithelial cells. plpA transcription was growth phase-dependent, reaching maximum levels during the early stationary phase. Also, transcription factor HlyU and cAMP receptor protein (CRP) mediate additive activation and host-dependent induction of plpA Molecular biological analyses revealed that plpA expression is controlled via the promoter, P plpA , and that HlyU and CRP directly bind to P plpA upstream sequences. Taken together, this study demonstrated that VvPlpA is a type II secretion system-dependent secretory phospholipase A2 regulated by HlyU and CRP and is essential for the pathogenicity of V. vulnificus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfolipasas A2/metabolismo , Vibriosis/enzimología , Vibrio vulnificus/enzimología , Vibrio vulnificus/patogenicidad , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Línea Celular , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Fosfolipasas A2/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vibriosis/genética , Vibriosis/patología , Vibrio vulnificus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...