Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 436, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773361

RESUMEN

BACKGROUND: E2F/DP (Eukaryotic 2 transcription factor/dimerization partner) family proteins play an essential function in the cell cycle development of higher organisms. E2F/DP family genes have been reported only in a few plant species. However, comprehensive genome-wide characterization analysis of the E2F/DP gene family of Solanum lycopersicum has not been reported so far. RESULTS: This study identified eight nonredundant SlE2F/DP genes that were classified into seven groups in the phylogenetic analysis. All eight genes had a single E2F-TDP domain and few genes had additional domains. Two segmental duplication gene pairs were observed within tomato, in addition to cis-regulatory elements, miRNA target sites and phosphorylation sites which play an important role in plant development and stress response in tomato. To explore the three-dimensional (3D) models and gene ontology (GO) annotations of SlE2F/DP proteins, we pointed to their putative transporter activity and their interaction with several putative ligands. The localization of SlE2F/DP-GFP fused proteins in the nucleus and endoplasmic reticulum suggested that they may act in other biological functions. Expression studies revealed the differential expression pattern of most of the SlE2F/DP genes in various organs. Moreover, the expression of E2F/DP genes against abiotic stress, particularly SlE2F/DP2 and/or SlE2F/DP7, was upregulated in response to heat, salt, cold and ABA treatment. Furthermore, the co-expression analysis of SlE2F/DP genes with multiple metabolic pathways was co-expressed with defence genes, transcription factors and so on, suggested their crucial role in various biological processes. CONCLUSIONS: Overall, our findings provide a way to understand the structure and function of SlE2F/DP genes; it might be helpful to improve fruit development and tolerance against abiotic stress through marker-assisted selection or transgenic approaches.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Estrés Fisiológico , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Familia de Multigenes , Filogenia , Genoma de Planta , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo
2.
Plant Methods ; 20(1): 20, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308305

RESUMEN

The study aimed to edit ethylene (ET) biosynthesis genes [1-aminocyclopropane-1-carboxylic acid (ACC) synthetase 1 (ACS1) and ACC oxidase 1 (ACO1)] in carnation using the CRISPR/Cas9 ribonucleoprotein (RNP) complex system. Initially, the conserved regions of the target genes (ACS1 and ACO1) were validated for the generation of different single guide RNAs (sgRNAs), followed by the use of an in vitro cleavage assay to confirm the ability of the sgRNAs to cleave the target genes specifically. The in vitro cleavage assay revealed that the sgRNAs were highly effective in cleaving their respective target regions. The complex of sgRNA: Cas9 was directly delivered into the carnation protoplast, and the target genes in the protoplast were deep-sequenced. The results revealed that the sgRNAs were applicable for editing the ET biosynthesis genes, as the mutation frequency ranged from 8.8 to 10.8% for ACO1 and 0.2-58.5% for ACS1. When sequencing the target genes in the callus derived from the protoplasts transformed with sgRNA: Cas9, different indel patterns (+ 1, - 1, and - 8 bp) in ACO1 and (- 1, + 1, and + 11) in ACS1 were identified. This study highlighted the potential application of CRISPR/Cas9 RNP complex system in facilitating precise gene editing for ET biosynthesis in carnation.

3.
Plant Physiol Biochem ; 203: 107998, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37678091

RESUMEN

To investigate the role of ethylene (ET) in abiotic stress tolerance in petunia cv. 'Mirage Rose', petunia plants in which the ET biosynthesis gene 1-aminocyclopropane-1-carboxylic acid oxidase 4 (ACO4) was knocked out (phaco4 mutants) and wild-type (WT) plants were exposed to heat and drought conditions. Loss of function of ACO4 significantly delayed leaf senescence and chlorosis under heat and drought stress by maintaining the SPAD values and the relative water content, indicating a greater stress tolerance of phaco4 mutants than that of WT plants. This tolerance was related to the lower ET and reactive oxygen species levels in the mutants than in WT plants. Furthermore, the stress-induced expression of genes related to ET signal transduction, antioxidant and proline activities, heat response, and biosynthesis of abscisic acid was higher in the mutants than in WT plants, indicating a greater stress tolerance in the former than in the latter. These results demonstrate the deleterious effects of stress-induced ET on plant growth and provide a better physiological and molecular understanding of the role of stress ET in the abiotic stress response of petunia. Because the loss of function of ACO4 in petunia improved stress tolerance, we suggest that ACO4 plays a vital role in stress-induced leaf senescence and acts as a negative regulator of abiotic stress tolerance.

4.
Front Pharmacol ; 14: 1217111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649894

RESUMEN

Introduction: Although sinapic acid is found in various edible plants and has been shown to have anti-inflammatory properties including colitis, its underlying mechanism and effects on the composition of the gut microbiota are largely unknown. We aimed to identify an early response kinase that regulates the localization of tight junction proteins, act at the onset of the inflammatory response, and is regulated by sinapic acid. Additionally, we analyzed the effects of sinapic acid on the homeostasis of the intestinal microbiome. Methods: We examined the aberrant alterations of early response genes such as nuclear factor-kappa B (NF-κB) and activating transcription factor (ATF)-2 within 2 h of sinapic acid treatment in fully differentiated Caco-2 cells with or without lipopolysaccharide and tumor necrosis factor (TNF)-α stimulation. To confirm the effect of sinapic acid on stimulus-induced delocalization of tight junction proteins, including zonula occludens (ZO)-1, occludin, and claudin-2, all tight junction proteins were investigated by analyzing a fraction of membrane and cytosol proteins extracted from Caco-2 cells and mice intestines. Colitis was induced in C57BL/6 mice using 2% dextran sulfate sodium and sinapic acid (2 or 10 mg/kg/day) was administrated for 15 days. Furthermore, the nutraceutical and pharmaceutical activities of sinapic acid for treating inflammatory bowel disease (IBD) evaluated. Results: We confirmed that sinapic acid significantly suppressed the stimulus-induced delocalization of tight junction proteins from the intestinal cell membrane and abnormal intestinal permeability as well as the expression of inflammatory cytokines such as interleukin (IL)-1ß and TNF-α in vitro and in vivo. Sinapic acid was found to bind directly to transforming growth factor beta-activated kinase 1 (TAK1) and inhibit the stimulus-induced activation of NF-κB as well as MAPK/ATF-2 pathways, which in turn regulated the expression of mitogen-activated protein kinase (MLCK). Dietary sinapic acid also alleviated the imbalanced of gut microbiota and symptoms of IBD, evidenced by improvements in the length and morphology of the intestine in mice with colitis. Discussion: These findings indicate that sinapic acid may be an effective nutraceutical and pharmaceutical agent for IBD treatment as it targets TAK1 and inhibits subsequent NF-κB and ATF-2 signaling.

5.
Environ Sci Pollut Res Int ; 30(32): 78004-78016, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37303013

RESUMEN

Globally, the number of heavy metal (HM)-polluted sites has increased rapidly in recent years, posing a serious threat to agricultural productivity, human health, and environmental safety. Hence, it is necessary to remediate HM-polluted sites to increase cultivatable lands for agricultural productivity, prevent hazardous effects to human health, and promote environmental safety. Removal of HMs using plants (phytoremediation) is a promising method as it is eco-friendly. Recently, ornamental plants have been widely used in phytoremediation programs as they can simultaneously eliminate HMs and are aesthetically pleasing. Among the ornamental plants, Iris species are frequently used; however, their role in HM remediation has not been reviewed yet. Here, the importance of Iris species in the ornamental industry and their different commercial aspects are briefly described. Additionally, the mechanisms of how the plant species absorb and transport the HMs to the above-ground tissues and tolerate HM stress are highlighted. The variation in HM remediation efficiency depending on the plant species, HM type and concentration, use of certain supplements, and experimental conditions are also discussed. Iris species are able to remove other hazards as well, such as pesticides, pharmaceutical compounds, and industrial wastes, from polluted soils or waste-water. Owing to the valuable information presented in this review, we expect more applications of the species in reclaiming polluted sites and beautifying the environment.


Asunto(s)
Género Iris , Metales Pesados , Contaminantes del Suelo , Humanos , Contaminantes del Suelo/análisis , Plantas , Residuos Industriales , Metales Pesados/análisis , Biodegradación Ambiental , Suelo
6.
Arch Virol ; 168(4): 117, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947325

RESUMEN

The currently named gerbera virus A (GeVA) has been shown to be a novel capillovirus with a complete genome of 6929 nucleotides (nt) (GenBank accession no. OM525829.1). GeVA was detected in Gerbera jamesonii using high-throughput RNA sequencing analysis. The GeVA genome is a single linear RNA with two open reading frames (ORF), similar to those of other capilloviruses. The larger ORF encodes a polyprotein containing four domains, while the smaller ORF encodes a movement protein. The complete genome had 41.0-54.9% nt sequence identity to other those of capilloviruses, while the polyprotein and the movement protein had 26.5-36.4% and 13.1-32.2% amino acid (aa) sequence identity, respectively. Two UUAGGU promoters for subgenomic RNA (sgRNA) transcription were also identified in this study. BLAST analysis demonstrated that the GeVA genome shared the highest sequence similarity with rubber tree capillovirus 1 (MN047299.1) (complete nucleotide sequence identity, 68.54%; polyprotein amino acid sequence identity, 44.53%). Phylogenetic analysis based on complete genome and replication protein sequences placed GeVA alongside other members of the genus Capillovirus in the family Betaflexiviridae. These data suggest that GeVA is a new member of the genus Capillovirus.


Asunto(s)
Flexiviridae , Secuencia de Aminoácidos , Flexiviridae/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética , ARN Subgenómico
7.
Protoplasma ; 260(1): 271-280, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35622155

RESUMEN

The protocol optimized for Petunia hybrida cv. Mirage Rose produced high protoplast yields in 3 out of other 11 cultivars (Damask White, Dreams White, and Opera Supreme White). Factors optimized in the protoplast transfection process showed that the best transfection efficiency (80%) was obtained using 2.5 × 105 protoplast density, 40% polyethylene glycol (PEG) concentration, 10 µg plasmid DNA, and 15 min of transfection time. Assessing the usability of the protocol for other cultivars (Damask White, Dreams White, and Opera Supreme White), a reasonable protoplast transfection efficiency (⁓50%) was observed in the cultivars Dreams White and Opera Supreme White, with lower efficiency (⁓50%) observed in the cv. Damask White. The transient expression of enhanced green fluorescent protein (eGFP) in the nucleus of the transfected protoplasts of all cultivars was confirmed using PCR. This system could be valuable for genome editing of unwanted genes in petunias using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) technology. Furthermore, it could contribute to other studies on protein subcellular localization, protein-protein interactions, and functional gene expression in the petunias.


Asunto(s)
Sistemas CRISPR-Cas , Petunia , Petunia/genética , Protoplastos , Edición Génica/métodos , Expresión Génica
8.
Plants (Basel) ; 11(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36432841

RESUMEN

PLATZ (plant AT-rich sequence and zinc-binding) family proteins with two conserved zinc-dependent DNA-binding motifs are transcription factors specific to the plant kingdom. The functions of PLATZ proteins in growth, development, and adaptation to multiple abiotic stresses have been investigated in various plant species, but their role in tomato has not been explored yet. In the present work, 20 non-redundant Solanum lycopersicum PLATZ (SlPLATZ) genes with three segmentally duplicated gene pairs and four tandemly duplicated gene pairs were identified on eight tomato chromosomes. The comparative modeling and gene ontology (GO) annotations of tomato PLATZ proteins indicated their probable roles in defense response, transcriptional regulation, and protein metabolic processes as well as their binding affinity for various ligands, including nucleic acids, peptides, and zinc. SlPLATZ10 and SlPLATZ17 were only expressed in 1 cm fruits and flowers, respectively, indicating their preferential involvement in the development of these organs. The expression of SlPLATZ1, SlPLATZ12, and SlPLATZ19 was up- or down-regulated following exposure to various abiotic stresses, whereas that of SlPLATZ11 was induced under temperature stresses (i.e., cold and heat stress), revealing their probable function in the abiotic stress tolerance of tomato. Weighted gene co-expression network analysis corroborated the aforementioned findings by spotlighting the co-expression of several stress-associated genes with SlPLATZ genes. Confocal fluorescence microscopy revealed the localization of SlPLATZ−GFP fusion proteins in the nucleus, hinting at their functions as transcription factors. These findings provide a foundation for a better understanding of the structure and function of PLATZ genes and should assist in the selection of potential candidate genes involved in the development and abiotic stress adaptation in tomato.

9.
Cells ; 11(20)2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36291065

RESUMEN

The role of acdS, which encodes the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme, in extending flower longevity and improving tolerance to cadmium (Cd) stress was assessed using transgenic Petunia hybrida cv. 'Mirage Rose' overexpressing acdS and wild-type (WT) plants. The overexpression of acdS reduced ethylene production in floral tissue via suppression of ethylene-related genes and improved flower longevity, approximately 2 to 4 days longer than WT flowers. Under Cd stress, acdS significantly reduced Cd-induced ethylene production in vegetable tissues of transgenic plants through suppression of ethylene-related genes. This resulted in a lower accumulation of ethylene-induced reactive oxygen species (ROS) in the transgenic plants than in WT plants. In addition, expression of the genes involved in the activities of antioxidant and proline synthesis as well as the metal chelation process was also higher in the former than in the latter. Moreover, Cd accumulation was significantly higher in WT plants than in the transgenic plants. These results are linked to the greater tolerance of transgenic plants to Cd stress than the WT plants, which was determined based on plant growth and physiological performance. These results highlight the potential applicability of using acdS to extend flower longevity of ornamental bedding plants and also reveal the mechanism by which acdS improves Cd-stress tolerance. We suggest that acdS overexpression in plants can extend flower longevity and also help reduce the negative impact of Cd-induced ethylene on plant growth when the plants are unavoidably cultivated in Cd-contaminated soil.


Asunto(s)
Cadmio , Petunia , Cadmio/toxicidad , Petunia/genética , Especies Reactivas de Oxígeno , Antioxidantes/metabolismo , Etilenos/metabolismo , Flores/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Prolina , Suelo
10.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293082

RESUMEN

HVA22 family proteins with a conserved TB2/DP1/HVA22 domain are ubiquitous in eukaryotes. HVA22 family genes have been identified in a variety of plant species. However, there has been no comprehensive genome-wide analysis of HVA22 family genes in tomato (Solanum lycopersicum L.). Here, we identified 15 non-redundant SlHVA22 genes with three segmentally duplicated gene pairs on 8 of the 12 tomato chromosomes. The predicted three-dimensional (3D) models and gene ontology (GO) annotations of SlHVA22 proteins pointed to their putative transporter activity and ability to bind to diverse ligands. The co-expression of SlHVA22 genes with various genes implicated in multiple metabolic pathways and the localization of SlHVA22-GFP fused proteins to the endoplasmic reticulum suggested that they might have a variety of biological functions, including vesicular transport in stressed cells. Comprehensive expression analysis revealed that SlHVA22 genes were differentially expressed in various organs and in response to abiotic stress conditions. The predominant expression of SlHVA22i at the ripening stage and that of SlHVA22g, SlHVA22k, and SlHVA22l in fruits at most developmental stages suggested their probable involvement in tomato fruit development and ripening. Moreover, the transcript expression of most tomato HVA22 genes, particularly SlHVA22b, SlHVA22i, SlHVA22k, SlHVA22l, SlHVA22m, and SlHVA22n, was affected by abscisic acid (ABA) and diverse abiotic stress treatments, indicating the likely involvement of these genes in tomato abiotic stress responses in an ABA-dependent manner. Overall, our findings provide a foundation to better understand the structures and functional roles of SlHVA22 genes, many of which might be useful to improve the abiotic stress tolerance and fruit quality of tomato through marker-assisted backcrossing or transgenic approaches.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Genoma de Planta , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Filogenia
11.
Plant Cell Rep ; 41(11): 2201-2211, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35988098

RESUMEN

KEY MESSAGE: Overexpression of acdS in petunia negatively affects seed germination by suppression of ethylene biosynthesis and signaling genes and induction of abscisic acid biosynthesis genes in the seeds. The acdS gene, which encodes 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, has been overexpressed in horticultural crops to improve their tolerance to abiotic stress. However, the role of acdS in the germination of crop seeds has not been investigated, despite its suppression of ethylene production. In this study, acdS overexpression significantly reduced seed weight and germination rate in transgenic petunia cv. Merage Rose (T5, T7, and T12) relative to wild type via the suppression of ethylene biosynthesis and signaling genes and induction of abscisic acid (ABA) biosynthesis genes. The germination rate of T7 was significantly lower than those of T5 and T12, which was linked to higher expression of acdS in the former than the latter. The addition of exogenous ACC and gibberellic acid (GA3) to the germination medium improved the germination rate of T5 seeds and GA3 promoted the germination rate of T12 seeds. However, neither ACC nor GA3 promoted the germination rate of T7 seeds. The improved germination rates in T5 and T12 were associated with the transcriptional regulation of ethylene biosynthesis genes, particularly that of the ACO1 gene, signaling genes, and ABA biosynthesis genes. In this study, we discovered a negative role of acdS in seed germination in petunia. Thus, we highlight the need to consider the negative effect of acdS on seed germination when overexpressing the gene in horticultural crops to improve tolerance to abiotic stress.


Asunto(s)
Germinación , Petunia , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Petunia/genética , Petunia/metabolismo , Semillas/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
12.
Plant Pathol J ; 38(4): 403-409, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35953060

RESUMEN

In biological particles such as Fusarium species, ice nucleation activity (INA) has been observed. Fusarium strains isolated from apple declined trees in Korea were identified with a multilocus sequence analysis using the tef1 and rpb1 genes. Droplet-freezing and tube-freezing assays were used to determine the INA of the strains, using Pseudomonas syringae pv. syringae KACC 21200 as a positive control and resulting in seven INA+ fungal strains that were identified as F. tricinctum (KNUF- 21-F17, KNUF-21-F18, KNUF-21-F29, KNUF-21-F32, KNUF-21-F38, KNUF-21-F43, and KNUF-21-F44). The effect of Fusarium INA+ KNUF-21-F29 was compared to that of INA- strains on Chrysanthemum morifolium cv. Shinma explants. A higher callus formation and noshoot formation were observed, suggesting that fungal INA could play a role in cold injuries and be a factor to consider in rapid apple decline. To the best of our knowledge, this is the first report of INA fungal strains isolated in Korea.

13.
Materials (Basel) ; 15(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35407770

RESUMEN

For the first time, poly(vinyl alcohol) (PVA)/poly(methyl methacrylate-methallyl alcohol) (P(MMA-MAA)) (9:1, 7:3, 5:5) blend films were made simultaneously using the saponification method in a heterogeneous medium from poly(vinyl acetate) (PVAc)/poly(methyl methacrylate) (PMMA) (9:1, 7:3, 5:5) blend films, respectively. The surface morphology and characteristics of the films were investigated using optical microscopy (OM), atomic force microscopy (AFM), X-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Moreover, the effect of the PVAc content on the degree of saponification (DS) of the PVAc/PMMA films were evaluated and revealed that the obtained DS value increased with the increase in PVAc content in the PVAc/PMMA blend films. According to the OM results, the saponified films demonstrated increased surface roughness compared with the unsaponified films. The AFM images revealed morphological variation among the saponified PVAc/PMMA blend films with different mass ratios of 9:1, 7:3, and 5:5. According to the DSC and TGA results, all blend film types exhibited higher thermal property after the saponification treatment. The XRD and FTIR results confirmed the conversion of the PVAc/PMMA into PVA/P(MMA-MAA) films. Thus, our present work may give a new idea for making blend film as promising medical material with significant surface properties based on hydrophilic/hydrophobic strategy.

14.
Front Plant Sci ; 13: 865542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401598

RESUMEN

The liaison between Nitric oxide (NO) and phytohormones regulates a myriad of physiological processes at the cellular level. The interaction between NO and phytohormones is mainly influenced by NO-mediated post-translational modifications (PTMs) under basal as well as induced conditions. Protein S-nitrosylation is the most prominent and widely studied PTM among others. It is the selective but reversible redox-based covalent addition of a NO moiety to the sulfhydryl group of cysteine (Cys) molecule(s) on a target protein to form S-nitrosothiols. This process may involve either direct S-nitrosylation or indirect S-nitrosylation followed by transfer of NO group from one thiol to another (transnitrosylation). During S-nitrosylation, NO can directly target Cys residue (s) of key genes involved in hormone signaling thereby regulating their function. The phytohormones regulated by NO in this manner includes abscisic acid, auxin, gibberellic acid, cytokinin, ethylene, salicylic acid, jasmonic acid, brassinosteroid, and strigolactone during various metabolic and physiological conditions and environmental stress responses. S-nitrosylation of key proteins involved in the phytohormonal network occurs during their synthesis, degradation, or signaling roles depending upon the response required to maintain cellular homeostasis. This review presents the interaction between NO and phytohormones and the role of the canonical NO-mediated post-translational modification particularly, S-nitrosylation of key proteins involved in the phytohormonal networks under biotic and abiotic stresses.

15.
Front Plant Sci ; 13: 844449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283920

RESUMEN

Ethylene plays a critical signaling role in the abiotic stress tolerance mechanism. However, the role of ethylene in regulating abiotic stress tolerance in petunia has not been well-investigated, and the underlying molecular mechanism by which ethylene regulates abiotic stress tolerance is still unknown. Therefore, we examined the involvement of ethylene in salt and drought stress tolerance of petunia using the petunia wild type cv. "Merage Rose" and the ethylene biosynthesis genes (PhACO1 and PhACO3)-edited mutants (phaco1 and phaco3). Here, we discovered that editing PhACO1 and PhACO3 reduced ethylene production in the mutants, and mutants were more sensitive to salt and drought stress than the wild type (WT). This was proven by the better outcomes of plant growth and physiological parameters and ion homeostasis in WT over the mutants. Molecular analysis revealed that the expression levels of the genes associated with antioxidant, proline synthesis, ABA synthesis and signaling, and ethylene signaling differed significantly between the WT and mutants, indicating the role of ethylene in the transcriptional regulation of the genes associated with abiotic stress tolerance. This study highlights the involvement of ethylene in abiotic stress adaptation and provides a physiological and molecular understanding of the role of ethylene in abiotic stress response in petunia. Furthermore, the finding alerts researchers to consider the negative effects of ethylene reduction on abiotic stress tolerance when editing the ethylene biosynthesis genes to improve the postharvest quality of horticultural crops.

16.
Plant Methods ; 18(1): 4, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027070

RESUMEN

BACKGROUND: This study investigated the effects of ethylene release compounds (ethephon), ethylene-action inhibitors (silver thiosulfate: STS), and nitric oxide donor (sodium nitroprusside: SNP) on stem bending of snapdragon flowers. Moreover, the effects of plant growth supplements [6-benzyladenine (BA), gibberellic acid 3 (GA3), and calcium chloride (CaCl2)] on the stem bending were also extensively investigated. RESULTS: Ethephon completely prevented stem bending until 9 days after treatment (9 DAT). STS exhibited the highest bending rate, while SNP did not significantly affect the bending compared to the controls. The bending results were associated with the results of stem curvature, relative shoot elongation, ethylene production, and lignin content, that are involved in the stem bending mechanism. This was proven by the expression analysis of genes involved in ethylene and lignin biosynthetic pathways. The addition of plant growth supplements slightly or significantly delayed stem bending in the treatments (control, SNP, and STS) and significantly reduced petal senescence in ethephon at 9 DAT. CONCLUSION: These results show the preventive role of ethephon in the stem bending of cut snapdragon. Moreover, the combination of ethephon with supplements also provided information that could guide the development of strategies to delay stem bending in other cut flowers that undergo serious bending during a short vase life.

17.
Plant Cell Rep ; 41(1): 209-220, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34665313

RESUMEN

KEY MESSAGE: Editing of ACO genes involved in ethylene biosynthesis pathway reduces ethylene production in petunia seeds and inhibits seed germination. Ethylene production in the seeds of Petunia hybrida cv. 'Mirage Rose' was associated with expression of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) genes (PhACO1, PhACO3, and PhACO4). Suppression of their expression by ethylene inhibitor silver thiosulphate (STS) significantly reduced ethylene production and inhibited seed germination. When it was combined with ethylene precursor ACC, ethylene production was re-promoted via activation of the genes and higher seed germination was restored. This was confirmed using the mutants editing the genes and WT. In the present study, compared with wild type plants, three different mutants (phaco1, phaco3, and phaco4) showed significantly decreased germination percentages as well as delayed germination time and seedling growth. These reductions were associated with lighter seed weight, lower ACO transcript levels, and lower ethylene production in mutants. Inhibited seed germination owing to reduced ethylene production was further verified by the supplementation of exogenous ACC and gibberellic acid (GA3) to growth medium, which restored high seed germination activity in all mutants via enhanced ethylene production. In this study, we reported a key regulatory role of ethylene in seed germination mechanisms in petunia. Further, we highlighted on need to consider the negative effects of ethylene reduction in seed germination and plant growth when editing genes in the ethylene biosynthesis pathway for the maintenance of postharvest fruit, vegetable, and flower quality.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Etilenos/metabolismo , Edición Génica , Germinación/genética , Petunia/genética , Proteínas de Plantas/genética , Semillas/fisiología , Aminoácido Oxidorreductasas/metabolismo , Petunia/enzimología , Proteínas de Plantas/metabolismo
18.
Antioxidants (Basel) ; 10(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34943012

RESUMEN

The skin acts as the primary defense organ that protects the body from the external environment. Skin cancer is one of the most common cancers in the world. Skin carcinogenesis is usually caused by cell degeneration due to exposure to ultraviolet (UV) radiation, which causes changes in various signaling networks, disrupting the homeostasis of single skin cells. In this review, we summarize the roles of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and epidermal growth factor receptor (EGFR) in UV-induced skin carcinogenesis. Furthermore, we describe the crosstalk that exists between NOX, EGFR, and protein tyrosine phosphatase κ and its oncogenic downstream signaling pathways. Chemoprevention is the use of chemical compounds to recover the healthy status of the skin or delay cancer development. Current evidence from in vitro and in vivo studies on chemopreventive phytochemicals that target NOX, EGFR, or both, as major regulators of skin carcinogenesis will also be discussed.

19.
Front Plant Sci ; 12: 745038, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721471

RESUMEN

This study investigated whether ethylene is involved in the stem-bending mechanism of three different snapdragon cultivars 'Asrit Red', 'Asrit Yellow', and 'Merryred Pink', by treating their cut stems with an ethylene-releasing compound (ethephon), an ethylene-action inhibitor [silver thiosulfate (STS)], and distilled water (as the control). Ethephon completely prevented stem bending in all cultivars, whereas STS exhibited a higher bending rate compared with the control. The bending rates were influenced by several factors, such as the degree of stem curvature, relative shoot elongation, ethylene production, and lignin content, indicating their involvement in the stem-bending mechanism of the cultivars. The analysis of the expression of genes involved in the ethylene and lignin biosynthetic pathways also supported the importance of lignin and ethylene in the stem-bending mechanism. Taken together, as ethephon completely prevented stem bending of the three snapdragon cultivars, this study suggested that ethylene acts as a negative regulator of the stem-bending mechanism of snapdragon cultivars, and the information will be valuable for the prevention of stem bending in other commercially important ornamental flowers.

20.
BMC Plant Biol ; 21(1): 530, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772358

RESUMEN

BACKGROUND: Alba (Acetylation lowers binding affinity) proteins are an ancient family of nucleic acid-binding proteins that function in gene regulation, RNA metabolism, mRNA translatability, developmental processes, and stress adaptation. However, comprehensive bioinformatics analysis on the Alba gene family of Solanum lycopersicum has not been reported previously. RESULTS: In the present study, we undertook the first comprehensive genome-wide characterization of the Alba gene family in tomato (Solanum lycopersicum L.). We identified eight tomato Alba genes, which were classified into two groups: genes containing a single Alba domain and genes with a generic Alba domain and RGG/RG repeat motifs. Cis-regulatory elements and target sites for miRNAs, which function in plant development and stress responses, were prevalent in SlAlba genes. To explore the structure-function relationships of tomato Alba proteins, we predicted their 3D structures, highlighting their likely interactions with several putative ligands. Confocal microscopy revealed that SlAlba-GFP fusion proteins were localized to the nucleus and cytoplasm, consistent with putative roles in various signalling cascades. Expression profiling revealed the differential expression patterns of most SlAlba genes across diverse organs. SlAlba1 and SlAlba2 were predominantly expressed in flowers, whereas SlAlba5 expression peaked in 1 cm-diameter fruits. The SlAlba genes were differentially expressed (up- or downregulated) in response to different abiotic stresses. All but one of these genes were induced by abscisic acid treatment, pointing to their possible regulatory roles in stress tolerance via an abscisic acid-dependent pathway. Furthermore, co-expression of SlAlba genes with multiple genes related to several metabolic pathways spotlighted their crucial roles in various biological processes and signalling. CONCLUSIONS: Our characterization of SlAlba genes should facilitate the discovery of additional genes associated with organ and fruit development as well as abiotic stress adaptation in tomato.


Asunto(s)
Frutas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...