Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 10(12)2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835453

RESUMEN

Robotic micro/nanoswimmers can potentially be used as tools for medical applications, such as drug delivery and noninvasive surgery. Recently, achiral microswimmers have gained significant attention because of their simple structures, which enables high-throughput fabrication and size scalability. Here, microparticle image velocimetry (µ-PIV) was used to study the hydrodynamics of achiral microswimmers near a boundary. The structures of these microswimmers resemble the letter L and were fabricated using photolithography and thin-film deposition. Through µ-PIV measurements, the velocity flow fields of the microswimmers rotating at different frequencies were observed. The results herein yield an understanding of the hydrodynamics of the L-shaped microswimmers, which will be useful in applications such as fluidic manipulation.

2.
Biomicrofluidics ; 9(2): 024121, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26015833

RESUMEN

Microorganisms can effectively generate propulsive force at the microscale where viscous forces overwhelmingly dominate inertia forces; bacteria achieve this task through flagellar motion. When swarming bacteria, cultured on agar plates, are blotted onto the surface of a microfabricated structure, a monolayer of bacteria forms what is termed a "bacterial carpet," which generates strong flows due to the combined motion of their freely rotating flagella. Furthermore, when the bacterial carpet coated microstructure is released into a low Reynolds number fluidic environment, the propulsive force of the bacterial carpet is able to give the microstructure motility. In our previous investigations, we demonstrated motion control of these bacteria powered microbiorobots (MBRs). Without any external stimuli, MBRs display natural rotational and translational movements on their own; this MBR self-actuation is due to the coordination of flagella. Here, we investigate the flow fields generated by bacterial carpets, and compare this flow to the flow fields observed in the bulk fluid at a series of locations above the bacterial carpet. Using microscale particle image velocimetry, we characterize the flow fields generated from the bacterial carpets of MBRs in an effort to understand their propulsive flow, as well as the resulting pattern of flagella driven self-actuated motion. Comparing the velocities between the bacterial carpets on fixed and untethered MBRs, it was found that flow velocities near the surface of the microstructure were strongest, and at distances far above, the surface flow velocities were much smaller.

3.
Artículo en Inglés | MEDLINE | ID: mdl-25314529

RESUMEN

Controllable propulsion of microscale and nanoscale devices enhanced with additional functionality would enable the realization of miniaturized robotic swimmers applicable to transport and assembly, actuators, and drug delivery systems. Following biological examples, existing magnetically actuated microswimmers have been designed to use flexibility or chirality, presenting fabrication challenges. Here we show that, contrary to biomimetic expectations, magnetically actuated geometries with neither flexibility nor chirality can produce propulsion, through both experimental demonstration and a theoretical analysis, which elucidates the fundamental constraints on micropropulsion via magnetetic rotation. Our results advance existing paradigms of low-Reynolds-number propulsion, possibly enabling simpler fabrication and design of microswimmers and nanoswimmers.


Asunto(s)
Fenómenos Magnéticos , Rotación , Algoritmos , Elasticidad , Modelos Lineales , Imanes , Modelos Teóricos , Nanoestructuras , Robótica , Natación , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...