Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712036

RESUMEN

Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Further, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.

2.
ACS Nano ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721824

RESUMEN

Various strain isolation strategies that combine rigid and stretchable regions for stretchable electronics were recently proposed, but the vulnerability of inorganic materials to mechanical stress has emerged as a major impediment to their performance. We report a strain-isolation system that combines heteropolymers with different elastic moduli (i.e., hybrid stretchable polymers) and utilize it to construct a rugged island-bridge inorganic electronics system. Two types of prepolymers were simultaneously cross-linked to form an interpenetrating polymer network at the rigid-stretchable interface, resulting in a hybrid stretchable polymer that exhibited efficient strain isolation and mechanical stability. The system, including stretchable micro-LEDs and microheaters, demonstrated consistent operation under external strain, suggesting that the rugged island-bridge inorganic electronics mounted on a locally strain-isolated substrate offer a promising solution for replacing conventional stretchable electronics, enabling devices with a variety of form factors.

3.
Viruses ; 16(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38543822

RESUMEN

Since the foot-and-mouth disease (FMD) outbreak in South Korea in 2010-2011, vaccination policies utilizing inactivated FMD vaccines composed of types O and A have been implemented nationwide. However, because type Asia1 occurred in North Korea in 2007 and intermittently in neighboring countries, the risk of type Asia1 introduction cannot be ruled out. This study evaluated the antigen yield and viral inactivation kinetics of the recombinant Asia1 Shamir vaccine strain (Asia1 Shamir-R). When Asia1 Shamir-R was proliferated in shaking flasks (1 L), a 2 L bioreactor (1 L), and a wave bioreactor (25 L), the antigen yields were 7.5 µg/mL, 5.2 µg/mL, and 3.8 µg/mL, respectively. The optimal FMDV inactivation conditions were 2 mM BEI at 26 °C and 1.0 mM BEI at 37 °C. There was no antigen loss due to BEI treatment, and only a decrease in antigen levels was observed during storage. The sera from pigs immunized with antigen derived from a bioreactor exhibited a neutralizing antibody titer of approximately 1/1000 against Asia1 Shamir and Asia1/MOG/05 viruses; therefore, Asia1 Shamir-R is expected to provide sufficient protection against both viruses. If an FMD vaccine production facility is established, this Asia1 Shamir-R can be employed for domestic antigen banks in South Korea.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Porcinos , Inactivación de Virus , Proteínas de la Cápside , Vacunas Sintéticas , Reactores Biológicos
4.
Vaccines (Basel) ; 12(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38543864

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious viral infection causing acute and severe vesicular lesions in cattle and pigs, which has prompted global vaccination policies. This study presents a technique for enhancing antigen yield in SAT1 BOT and SAT3 ZIM by treatment with calcium chloride (CaCl2). We tested changes in cell viability in BHK-21 suspension cells treated with varying concentrations of CaCl2. The optimal CaCl2 concentration was determined based on antigen yield. The timing of CaCl2 supplementation relative to FMD virus inoculation was tested. Finally, the optimal medium for antigen production was identified. We observed a concentration-dependent decrease in BHK-21 cell viability at >7.5 mM CaCl2. A CaCl2 concentration of 3 mM yielded the most antigens. CaCl2 supplementation relative to FMD virus infection was optimal 2 h before or with viral inoculation. CD-BHK 21 medium supplemented with CaCl2 was the most productive medium. Specifically, SAT1 BOT and SAT3 ZIM showed improved antigen production in CD-BHK 21 medium with 3 mM CaCl2, while Provero-1 and Cellvento BHK-200 media showed no significant enhancement. Overall, CaCl2 supplementation enhanced FMD antigen productivity. This study provides a useful framework for enhancing antigen production efficiently in the FMD vaccine industry.

5.
Sensors (Basel) ; 24(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38544078

RESUMEN

This paper highlights the significance of safety and reliability in modern industries, particularly in sectors like petroleum and LNG, where safety valves play a critical role in ensuring system safety under extreme conditions. To enhance the reliability of these valves, this study aims to develop a deep learning-based prognostics and health management (PHM) model. Past empirical methods have limitations, driving the need for data-driven prediction models. The proposed model monitors safety valve performance, detects anomalies in real time, and prevents accidents caused by system failures. The research focuses on collecting sensor data, analyzing trends for lifespan prediction and normal operation, and integrating data for anomaly detection. This study compares related research and existing models, presents detailed results, and discusses future research directions. Ultimately, this research contributes to the safe operation and anomaly detection of pilot-operated cryogenic safety valves in industrial settings.


Asunto(s)
Aprendizaje Profundo , Pronóstico , Reproducibilidad de los Resultados , Industrias , Longevidad
6.
Dent J (Basel) ; 12(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38534292

RESUMEN

Post-curing is the process of applying extra light to complete the polymerization process of 3D printing. The mechanical properties of light-cured three-dimensional (3D) printed resin can be improved by decreasing the oxygen concentrations during post-curing, and nitrogen-saturated post-curing has been applied for this purpose. This study aimed to evaluate and compare the color stability of 3D-printed resin crowns that were post-cured in both normal air and nitrogen-saturated conditions. Crowns were fabricated with a 3D printer and post-cured in normal air (control group; air) or nitrogen-saturated conditions (experimental group; nitrogen). The specimens in each group were subdivided into four subgroups, each exposed to different discoloration agents: distilled water, coffee, wine, and curry. Post-immersion color changes were measured using a digital spectrophotometer and analyzed using repeated-measures ANOVA. Fourier transform infrared (FT-IR) spectroscopy evaluated the degree of conversion of resin over immersion times for both post-curing conditions. Upon comparing the effects of post-curing conditions, a significant difference between the control and experimental groups in terms of immersion time in the wine and curry subgroups was found. FT-IR analysis showed a significant difference in the degree of conversion between the air and nitrogen groups from 10 to 300 s. These findings suggest that nitrogen-saturated post-curing can potentially enhance the conversion rate of 3D-printed resin crowns, thereby improving their color stability.

7.
Bone Joint J ; 106-B(4): 380-386, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555934

RESUMEN

Aims: The study aimed to assess the clinical outcomes of arthroscopic debridement and partial excision in patients with traumatic central tears of the triangular fibrocartilage complex (TFCC), and to identify prognostic factors associated with unfavourable clinical outcomes. Methods: A retrospective analysis was conducted on patients arthroscopically diagnosed with Palmer 1 A lesions who underwent arthroscopic debridement and partial excision from March 2009 to February 2021, with a minimum follow-up of 24 months. Patients were assessed using the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire, Mayo Wrist Score (MWS), and visual analogue scale (VAS) for pain. The poor outcome group was defined as patients whose preoperative and last follow-up clinical score difference was less than the minimal clinically important difference of the DASH score (10.83). Baseline characteristics, arthroscopic findings, and radiological factors (ulnar variance, MRI, or arthrography) were evaluated to predict poor clinical outcomes. Results: A total of 114 patients were enrolled in this study, with a mean follow-up period of 29.8 months (SD 14.4). The mean DASH score improved from 36.5 (SD 21.5) to 16.7 (SD 14.3), the mean MWS from 59.7 (SD 17.9) to 79.3 (SD 14.3), and the mean VAS pain score improved from 5.9 (SD 1.8) to 2.2 (SD 2.0) at the last follow-up (all p < 0.001). Among the 114 patients, 16 (14%) experienced poor clinical outcomes and ten (8.8%) required secondary ulnar shortening osteotomy. Positive ulnar variance was the only factor significantly associated with poor clinical outcomes (p < 0.001). Positive ulnar variance was present in 38 patients (33%); among them, eight patients (21%) required additional operations. Conclusion: Arthroscopic debridement alone appears to be an effective and safe initial treatment for patients with traumatic central TFCC tears. The presence of positive ulnar variance was associated with poor clinical outcomes, but close observation after arthroscopic debridement is more likely to be recommended than ulnar shortening osteotomy as a primary treatment.


Asunto(s)
Fibrocartílago Triangular , Traumatismos de la Muñeca , Humanos , Fibrocartílago Triangular/cirugía , Pronóstico , Resultado del Tratamiento , Estudios Retrospectivos , Artroscopía/efectos adversos , Traumatismos de la Muñeca/diagnóstico por imagen , Traumatismos de la Muñeca/cirugía , Traumatismos de la Muñeca/etiología , Dolor/etiología
8.
Nanoscale ; 16(14): 6949-6960, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38494908

RESUMEN

The nature of the conducting filament (CF) with a high concentration of oxygen vacancies (VOs) in oxide thin film-based resistive random access memory (RRAM) remains unclear. The VOs in the CF have been assumed to be positively charged (VO2+) to explain the field-driven switching of RRAM, but VO2+ clusters in high concentration encounter Coulomb repulsion, rendering the CF unstable. Therefore, this study examined the oxidation state of VOs in the CF and their effects on the switching behavior via density functional theory calculations using a Pt/TiO2/Ti model system. It was concluded that the VOs in the CF are in a low oxidation state but are transformed to VO2+ immediately after release from the CF. In addition, the short-range interactions between VOs were confirmed to facilitate the rupture and rejuvenation of the CF by reducing the required activation energy. Finally, an improved switching model was proposed by considering the charge transition of VOs, providing a plausible explanation for the reported coexistence of two opposite bipolar switching polarities: the eight-wise and the counter-eight-wise polarities.

9.
Bioeng Transl Med ; 9(2): e10629, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435815

RESUMEN

Human induced pluripotent stem cells (iPSCs) hold great promise for personalized medicine, as they can be differentiated into specific cell types, especially mesenchymal stem cells (MSCs). Therefore, our study sought to assess the feasibility of deriving MSCs from teratomas generated from human iPSCs. Teratomas serve as a model to mimic multilineage human development, thus enriching specific somatic progenitors and stem cells. Here, we discovered a small, condensed mass of MSCs within iPSC-generated teratomas. Afterward, we successfully isolated MSCs from this condensed mass, which was a byproduct of teratoma development. To evaluate the characteristics and cell behaviors of iPSC-derived MSCs (iPSC-MSCs), we conducted comprehensive assessments using qPCR, immunophenotype analysis, and cell proliferation-related assays. Remarkably, iPSC-MSCs exhibited an immunophenotype resembling that of conventional MSCs, and they displayed robust proliferative capabilities, similar to those of higher pluripotent stem cell-derived MSCs. Furthermore, iPSC-MSCs demonstrated the ability to differentiate into multiple lineages in vitro. Finally, we evaluated the therapeutic potential of iPSC-MSCs using an osteochondral defect model. Our findings demonstrated that teratomas are a promising source for the isolation of condensed MSCs. More importantly, our results suggest that iPSC-MSCs derived from teratomas possess the capacity for tissue regeneration, highlighting their promise for future therapeutic applications.

10.
Odontology ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429393

RESUMEN

This randomized clinical trial compared postoperative pain between a minimally invasive (MP) and conventional root canal treatment protocol (CP). A total of 170 mature permanent teeth (either with vital or necrotic pulp), were randomly assigned into two groups. In the CP group, ProTaper Gold (Dentsply Sirona, Ballaigues, Switzerland) and a continuous wave of condensation technique were used, whereas, in the MP group, TruNatomy (Dentsply Sirona), ultrasonic-assisted irrigation (UI), calcium hydroxide, and a sealer-based obturation technique were used. Patients recorded preoperative and postoperative pain using a 0-10 numerical rating scale (NRS) at 4 h, 1, 2, 3, 4, 5, 6, and 7 days after instrumentation and 1 day after canal obturation, respectively. There were no significant differences in pain intensity at any time points assessed between the two groups (p > 0.05). The occurrence of moderate/intense pain after instrumentation was significantly associated with preoperative periapical index (PAI) (p = 0.017) and NRS scores (p < 0.001). Preoperative pulp status (p = 0.009) and NRS score (p = 0.006) were identified as significant factors in the occurrence of moderate/intense pain after obturation. Instrumentation unequivocally reduced pain severity for both groups. The post-endodontic pain associated with the use of MP, combined with UI, Ca(OH)2, and calcium-silicate cement, did not differ from that of CP. Preoperative pain score, PAI, and preoperative pulp status were determined to be prognostic factors for postoperative pain.

11.
EJNMMI Radiopharm Chem ; 9(1): 15, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393404

RESUMEN

BACKGROUND: Recent advancements in positron emission tomograph (PET) using prostate specific membrane antigen (PSMA)-targeted radiopharmaceuticals have changed the standard of care for prostate cancer patients by providing more accurate information during staging of primary and recurrent disease. [68Ga]Ga-P16-093 is a new PSMA-PET radiopharmaceutical that demonstrated superior imaging performance in recent head-to-head studies with [68Ga]Ga-PSMA-11. To improve the availability of this new PSMA PET imaging agent, [18F]AlF-P16-093 was developed. The 18F-analog [18F]AlF-P16-093 has been synthesized manually at low activity levels using [18F]AlF2+ and validated in pre-clinical models. This work reports the optimization of the production of > 15 GBq of [18F]AlF-P16-093 using a custom automated synthesis platform. RESULTS: The sensitivity of the radiochemical yield of [18F]AlF-P16-093 to reaction parameters of time, temperature and reagent amounts was investigated using a custom automated system. The automated system is a low-cost, cassette-based system designed for 1-pot syntheses with flow-controlled solid phase extraction (SPE) workup and is based on the Raspberry Pi Zero 2 microcomputer/Python3 ecosystem. The optimized none-decay-corrected yield was 52 ± 4% (N = 3; 17.5 ± 2.2 GBq) with a molar activity of 109 ± 14 GBq/µmole and a radiochemical purity of 98.6 ± 0.6%. Run time was 30 min. A two-step sequence was used: SPE-purified [18F]F- was reacted with 80 nmoles of freeze-dried AlCl3·6H2O at 65 °C for 5 min followed by reaction with 160 nmoles of P16-093 ligand at 40 °C for 4 min in a 1:1 mixture of ethanol:0.5 M pH 4.5 NaOAc buffer. The mixture was purified by SPE (> 97% recovery). The final product formulation (5 mM pH 7 phosphate buffer with saline) exhibited a rate of decline in radiochemical purity of ~ 1.4%/h which was slowed to ~ 0.4%/h when stored at 4 °C. CONCLUSION: The optimized method using a custom automated system enabled the efficient (> 50% none-decay-corrected yield) production of [18F]AlF-P16-093 with high radiochemical purity (> 95%). The method and automation system are simple and robust, facilitating further clinical studies with [18F]AlF-P16-093.

12.
Vaccines (Basel) ; 12(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38400168

RESUMEN

South Korea has experienced outbreaks of foot-and-mouth disease (FMD) of serotypes O and A, leading to nationwide vaccination with a bivalent vaccine. Since the FMD virus (FMDV) Asia1 group-V genotype occurred in North Korea in 2007, an Asia1/MOG/05 vaccine strain belonging to the Asia1 group-V genotype was developed using a genetic recombination method (Asia1/MOG/05-R). This study aimed to evaluate the antigen productivity and viral inactivation kinetics of Asia1/MOG/05-R to assess its commercial viability. The antigen yield of Asia1/MOG/05-R produced in flasks and bioreactors was approximately 4.0 µg/mL. Binary ethylenimine (BEI) inactivation kinetics of Asia1/MOG/05-R showed that 2 mM and 1.0 mM BEI treatment at 26 °C and 37 °C, respectively, resulted in a virus titer <10-7 TCID50/mL within 24 h, meeting the inactivation kinetics criteria. During incubation at 26 °C and 37 °C, 10% antigen loss occurred, but not due to BEI treatment. When pigs were inoculated twice with the Asia1/MOG/05-R antigen, the virus neutralization titer increased to approximately 1:1000; therefore, it can sufficiently protect against Asia1/MOG/05-R and Asia1 Shamir viruses. The Asia1/MOG/05-R will be useful as a vaccine strain for domestic antigen banks.

13.
J Mech Behav Biomed Mater ; 151: 106399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244423

RESUMEN

Calcium silicate-based cement (CSC) is a commonly used material in endodontic treatment. However, it has limited antibacterial activity, especially for cases involving primary infections. Zinc oxide nanoparticles (ZnO-NPs) are recognized for their potential in biomedical applications due to their antibacterial properties and ability to reduce inflammation. This study aims to optimize CSC by incorporating ZnO-NPs to maintain its physical properties, enhance its antibacterial activity, and reduce the production of pro-inflammatory cytokines. ZnO-NPs were integrated into a commercial CSC (Endocem MTA) at 1 wt% (CSZ1) or 3 wt% (CSZ3). Setting time, compressive strength, and X-ray diffraction were then measured. In addition, pH, calcium ion release, and zinc ion release were measured for 7 days. Antibacterial activity against Enterococcus faecalis and viability of murine macrophages (RAW264.7) were determined using colorimetric assays. Gene expression levels of pro-inflammatory cytokines in lipopolysaccharide induced RAW264.7 were evaluated using quantitative polymerase chain reaction. Results were compared to an unmodified CSC group. In the CSZ3 group, there was a significant increase of approximately 12% in setting time and a reduction of about 36.4% in compressive strength compared to the control and CSZ1 groups. The presence of ZnO-NPs was detected in both CSZ1 and CSZ3. Both CSC and CSZ1 groups maintained an alkaline pH and released calcium ions, while zinc ions were significantly released in the CSZ1 group. Additionally, CSZ1 showed a 1.8-fold reduction of bacterial activity and exhibited around 85% reduction in colony-forming units compared to the CSC group. Furthermore, the CSZ1 group showed a more than 39% reduction in pro-inflammatory cytokine levels compared to the CSC group. Thus, enriching CSC with 1 wt% ZnO-NPs can enhance its antibacterial activity and reduce pro-inflammatory cytokines without showing any tangible adverse effects on its physical properties.


Asunto(s)
Compuestos de Calcio , Nanopartículas , Silicatos , Óxido de Zinc , Animales , Ratones , Óxido de Zinc/farmacología , Óxido de Zinc/química , Óxidos/química , Calcio , Nanopartículas/química , Antibacterianos/farmacología , Zinc , Citocinas
14.
Small ; 20(2): e2304592, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688336

RESUMEN

An approach for synthesizing AgInZnS/CdS/ZnS core-shell-shell quantum dots (QDs) that demonstrate exceptional stability and electroluminescence (EL) performance is introduced. This approach involves incorporating a cadmium sulfide (CdS) interlayer between an AgInZnS (AIZS) core and a zinc sulfide (ZnS) shell to prevent the diffusion of Zn ions into the AIZS core and the cation exchange at the core-shell interface. Consequently, a uniform and thick ZnS shell, with a thickness of 2.9 nm, is formed, which significantly enhances the stability and increases the photoluminescence quantum yield (87.5%) of the QDs. The potential for AIZS/CdS/ZnS QDs in electroluminescent devices is evaluated, and an external quantum efficiency of 9.6% in the 645 nm is achieved. These findings highlight the importance of uniform and thick ZnS shells in improving the stability and EL performance of QDs.

15.
Small ; 20(15): e2308872, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37994300

RESUMEN

Chemotherapy using a nanoscaled drug delivery system is an effective cancer therapy, but its high drug concentration often causes drug resistance in cancer cells and normal cell damage. Combination therapy involving two or more different cell signaling pathways can be a powerful tool to overcome the limitations of chemotherapy. Herein, this article presents nanogel (NG)-mediated co-delivery of a chemodrug camptothecin (CPT) and mitochondria-targeting monomer (MT monomer) for efficient activation of two modes of the programmed cell death pathway (apoptosis and necroptosis) and synergistic enhancement of cancer therapy. CPT and the monomer are incorporated together into the redox-degradable polymeric NGs for release in response to the intracellular glutathione. The MT monomer is shown to undergo reactive oxygen species (ROS)-triggered disulfide polymerization inside the cancerous mitochondria in cooperation with the chemotherapeutic CPT elevating the intracellular ROS level. The CPT/monomer interconnection in cell death mechanisms for mitochondrial dysfunction and enhanced cell death is evidenced by a series of cell analyses showing ROS generation, mitochondria damage, impacts on (non)cancerous or drug-resistant cells, and cell death modes. The presented work provides beneficial insights for utilizing combination therapy to facilitate a desired cell death mechanism and developing a novel nanosystem for more efficacious cancer treatment.


Asunto(s)
Disulfuros , Neoplasias , Polietilenglicoles , Polietileneimina , Humanos , Nanogeles , Preparaciones Farmacéuticas , Disulfuros/farmacología , Especies Reactivas de Oxígeno/metabolismo , Polimerizacion , Muerte Celular , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Camptotecina/farmacología , Camptotecina/uso terapéutico
16.
JMIR Form Res ; 8: e45202, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38152042

RESUMEN

BACKGROUND: Vancomycin pharmacokinetics are highly variable in patients with critical illnesses, and clinicians commonly use population pharmacokinetic (PPK) models based on a Bayesian approach to dose. However, these models are population-dependent, may only sometimes meet the needs of individual patients, and are only used by experienced clinicians as a reference for making treatment decisions. To assist real-world clinicians, we developed a deep learning-based decision-making system that predicts vancomycin therapeutic drug monitoring (TDM) levels in patients in intensive care unit. OBJECTIVE: This study aimed to establish joint multilayer perceptron (JointMLP), a new deep-learning model for predicting vancomycin TDM levels, and compare its performance with the PPK models, extreme gradient boosting (XGBoost), and TabNet. METHODS: We used a 977-case data set split into training and testing groups in a 9:1 ratio. We performed external validation of the model using 1429 cases from Kangwon National University Hospital and 2394 cases from the Medical Information Mart for Intensive Care-IV (MIMIC-IV). In addition, we performed 10-fold cross-validation on the internal training data set and calculated the 95% CIs using the metric. Finally, we evaluated the generalization ability of the JointMLP model using the MIMIC-IV data set. RESULTS: Our JointMLP model outperformed other models in predicting vancomycin TDM levels in internal and external data sets. Compared to PPK, the JointMLP model improved predictive power by up to 31% (mean absolute error [MAE] 6.68 vs 5.11) on the internal data set and 81% (MAE 11.87 vs 6.56) on the external data set. In addition, the JointMLP model significantly outperforms XGBoost and TabNet, with a 13% (MAE 5.75 vs 5.11) and 14% (MAE 5.85 vs 5.11) improvement in predictive accuracy on the inner data set, respectively. On both the internal and external data sets, our JointMLP model performed well compared to XGBoost and TabNet, achieving prediction accuracy improvements of 34% and 14%, respectively. Additionally, our JointMLP model showed higher robustness to outlier data than the other models, as evidenced by its higher root mean squared error performance across all data sets. The mean errors and variances of the JointMLP model were close to zero and smaller than those of the PPK model in internal and external data sets. CONCLUSIONS: Our JointMLP approach can help optimize treatment outcomes in patients with critical illnesses in an intensive care unit setting, reducing side effects associated with suboptimal vancomycin administration. These include increased risk of bacterial resistance, extended hospital stays, and increased health care costs. In addition, the superior performance of our model compared to existing models highlights its potential to help real-world clinicians.

17.
Biomaterials ; 304: 122425, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100905

RESUMEN

G protein-coupled receptors (GPCRs) play important roles in various pathogeneses and physiological regulations. Owing to their functional diversity, GPCRs are considered one of the primary pharmaceutical targets. However, drugs targeting GPCRs have not been developed yet to regenerate hard tissues such as teeth and bones. Mesenchymal stromal cells (MSCs) have high proliferation and multi-lineage differentiation potential, which are essential for hard tissue regeneration. Here, we present a strategy for targeting class A GPCRs for hard tissue regeneration by promoting the differentiation of endogenous MSCs into osteogenic and odontogenic progenitor cells. Through in vitro screening targeted at class A GPCRs, we identified six target receptors (LPAR1, F2R, F2RL1, F2RL2, S1PR1, and ADORA2A) and candidate drugs with potent biomineralization effects. Through a combination of profiling whole transcriptome and accessible chromatin regions, we identified that p53 acts as a key transcriptional activator of genes that modulate the biomineralization process. Moreover, the therapeutic potential of class A GPCR-targeting drugs was demonstrated in tooth pulpotomy and calvarial defect models. The selected drugs revealed potent regenerative effects in both tooth and bone defects, represented by newly formed highly mineralized regions. Consequently, this study provides translational evidence for a new regenerative strategy for damaged hard tissue.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Células Madre , Diferenciación Celular , Receptores Acoplados a Proteínas G , Regeneración Ósea
18.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37960630

RESUMEN

Drones, also known as unmanned aerial vehicles (UAVs) and sometimes referred to as 'Mobile IoT' or 'Flying IoT', are widely adopted worldwide, with their market share continuously increasing. While drones are generally harnessed for a wide range of positive applications, recent instances of drones being employed as lethal weapons in conflicts between countries like Russia, Ukraine, Israel, Palestine, and Hamas have demonstrated the potential consequences of their misuse. Such misuse poses a significant threat to cybersecurity and human lives, thereby highlighting the need for research to swiftly and accurately analyze drone-related crimes, identify the responsible pilot, and establish when and what illegal actions were carried out. In contrast to existing research, involving limited data collection and analysis of the drone, our study focused on collecting and rigorously analyzing data without restrictions from the remote controller used to operate the drone. This comprehensive approach allowed us to unveil essential details, including the pilot's account information, the specific drone used, pairing timestamps, the pilot's operational location, the drone's flight path, and the content captured during flights. We developed methodologies and proposed artifacts to reveal these specifics, which were supported by real-world data. Significantly, this study is the pioneering digital forensic investigation of remote controller devices. We meticulously collected and analyzed all internal data, and we even employed reverse engineering to decrypt critical information files. These achievements hold substantial significance. The outcomes of this research are expected to serve as a digital forensic methodology for drone systems, thereby making valuable contributions to numerous investigations.

19.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986974

RESUMEN

Respiratory viruses including the human parainfluenza viruses (hPIVs) are a constant burden to human health, with morbidity and mortality frequently increased after the acute phase of the infection. Although is proven that respiratory viruses can persist in vitro, the mechanisms of virus or viral products persistence, their sources, and their impact on chronic respiratory diseases in vivo are unknown. Here, we used Sendai virus (SeV) to model hPIV infection in mice and test whether virus persistence associates with the development of chronic lung disease. Following SeV infection, virus products were detected in lung macrophages, type 2 innate lymphoid cells (ILC2s) and dendritic cells for several weeks after the infectious virus was cleared. Cells containing viral protein showed strong upregulation of antiviral and type 2 inflammation-related genes that associate with the development of chronic post-viral lung diseases, including asthma. Lineage tracing of infected cells or cells derived from infected cells suggests that distinct functional groups of cells contribute to the chronic pathology. Importantly, targeted ablation of infected cells or those derived from infected cells significantly ameliorated chronic lung disease. Overall, we identified persistent infection of innate immune cells as a critical factor in the progression from acute to chronic post viral respiratory disease.

20.
Oral Dis ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37927178

RESUMEN

INTRODUCTION: Medication-related osteonecrosis of the jaw (MRONJ) is uncommon but can result in severe destruction of the jaw. This case-control study investigated the therapeutic effects of daily or weekly administration of teriparatide in the management of MRONJ using a cohort for osteonecrosis of the jaw. METHODS: Patients who were diagnosed with MRONJ and consented to teriparatide administration were assigned either to a group of daily injection or of weekly injection and completed a 4-week course of injection preoperatively and at least an 8-week course postoperatively. The control group received either the intraoperative rhBMP treatment (CG_BMP) or no additional perioperative treatment (CG_noBMP). The state of MRONJ was evaluated 2 months (T1) and 6 months (T2) postoperatively for all participants. RESULTS: Either group of daily injection (8.35 weeks ± 1.58; n = 17) or weekly injection (9.17 ± 3.79; n = 12) showed significantly faster healing than those of CG_BMP (14.40 ± 6.08; n = 25) or CG_noBMP (15.79 ± 9.79; n = 39). MRONJ was resolved completely in 24 out of 29 participants who completed the course of teriparatide injections, whereas 46.9% of CG showed delayed resolution. Multiple regression analysis indicated 7.50 times (95% CI, 1.77-31.82) more likelihood of complete resolution of MRONJ for participants with teriparatide injections. CONCLUSION: A course of daily or weekly administration of teriparatide injections may improve treatment outcomes for patients with MRONJ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA