Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2400692, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651492

RESUMEN

Aqueous rechargeable zinc-ion batteries (ARZIBs) are considered as an emerging energy storage technology owing to their low cost, inherent safety, and reasonable energy density. However, significant challenges associated with electrodes, and aqueous electrolytes restrict their rapid development. Herein, ethylene glycol-choline chloride (Eg-ChCl) based hydrated deep-eutectic electrolytes (HDEEs) are proposed for RZIBs. Also, a novel V10O24·nH2O@rGO composite is prepared and investigated in combination with HDEEs. The formulated HDEEs, particularly the composition of 1 ml of EG, 0.5 g of ChCl, 4 ml of H2O, and 2 M ZnTFS (1-0.5-4-2 HDEE), not only exhibit the lowest viscosity, highest Zn2+ conductivity (20.38 mS cm-1), and the highest zinc (Zn) transference number (t+ = 0.937), but also provide a wide electrochemical stability window (>3.2 V vs ZnǁZn2+) and enabledendrite-free Zn stripping/plating cycling over 1000 hours. The resulting ZnǁV10O24·nH2O@rGO cell with 1-0.5-4-2 HDEE manifests high reversible capacity of ≈365 mAh g-1 at 0.1 A g-1, high rate-performance (delivered ≈365/223 mAh g-1 at 0.1/10 mA g-1) and enhanced cycling performance (≈63.10% capacity retention in the 4000th cycle at 10 A g-1). Furthermore, 1-0.5-4-2 HDEE support feasible Zn-ion storage performance across a wide temperature range (0-80 °C) FInally, a ZnǁV10O24·nH2O@rGO pouch-cell prototype fabricated with 1-0.5-4-2 HDEE demonstrates good flexibility, safety, and durability.

2.
Small ; 20(23): e2309162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38152973

RESUMEN

Polymeric solid electrolytes have attracted tremendous interest in high-safety and high-energy capacity lithium-sulfur (Li─S) batteries. There is, however, still a dilemma to concurrently attain high Li-ion conductivity and high mechanical strength that effectively suppress the Li-dendrite growth. Accordingly, a rapidly Li-ion conducting solid electrolyte is prepared by grafting pyrrolidinium cation (PYR+)-functionalized poly(ethylene glycol) onto the poly(arylene ether sulfone) backbone (PAES-g-2PEGPYR). The PYR+ groups effectively immobilize anions of Li-salts in Li-conductive PEGPYR domains phase-separated from PAES matrix to enhance the single-ion conduction. The tailored PAES-g-2PEGPYR membrane shows a high Li-ion transference number of 0.601 and superior ionic conductivity of 1.38 mS cm-1 in the flexible solid state with the tensile strength of 1.0 MPa and Young's modulus of 1.5 MPa. Moreover, this PAES-g-2PEGPYR membrane exhibits a high oxidation potential (5.5 V) and high thermal stability up to 200 (C. The Li/PAES-g-2PEGPYR/Li cell stably operates for 1000 h without any short circuit, and the rechargeable Li/PAES-g-2PEGPYR/S cell discharges a capacity of 1004.7 mAh g-1 at C/5 with the excellent rate capability and the prominent cycling performance of 95.3% retention after 200 cycles.

3.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36558899

RESUMEN

Recently, silver nanoparticles (AgNPs) have been extensively explored in a variety of biological applications, especially cancer treatment. AgNPs have been demonstrated to exhibit anti-tumor effects through cell apoptosis. This study intends to promote cell apoptosis further by increasing oxidative stress. AgNPs are encapsulated by biocompatible and biodegradable polyaspartamide (PA) (PA-AgNPs) that carries the anti-cancer drug Doxorubicin (Dox) to inhibit cancer cells primarily. PA-AgNPs have an average hydrodynamic diameter of 130 nm, allowing them to move flexibly within the body. PA-AgNPs show an excellent targeting capacity to cancer cells when they are conjugated to biotin. In addition, they release Dox efficiently by up to 88% in cancer environments. The DCFDA experiment demonstrates that the Dox-carried PA-AgNPs generate reactive oxidation species intensively beside 4T1 cells. The MTT experiment confirms that PA-AgNPs with Dox may strongly inhibit 4T1 cancer cells. Furthermore, the in vivo study confirms that PA-AgNPs with Dox successfully inhibit tumors, which are about four times smaller than the control group and have high biosafety that can be applied for chemotherapy.

4.
Small ; 18(34): e2202963, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35908157

RESUMEN

With its superior theoretical energy density as well as abundance and environment-friendliness, the lithium-sulfur battery (LiSB) is a potential candidate to replace the traditional energy storage and generation systems. An innovative design is proposed for the high-performance solid-state LiSB system by combining the multi-functional cathode comprising the sulfur-loaded Al2 O3 -modified carbon nanotubes (S@ACNTs) and the flexible hybrid solid electrolyte (HSE). Assembled with S@ACNTs active material, the polycation poly(diallyldimethylammonium bis(trifluoromethylsulfonyl)imide) (PDATFSI) binder exhibits high Li+ conductivity of 0.45 mS cm-1 at room temperature, good thermal stability up to 450 °C, high adhesive strength with aluminum current collector up to 24 MPa, sustainable non-flammability, and desirable flexibility. When assembled with HSE membrane, the S@ACNTs/PDATFSI-60IL cathode layer demonstrates effective polysulfide trapping behavior and superior compatibility (65 Ω), resulting in high discharge capacity of 1203 mAh g-1 at 0.2 C in the 1st cycle, and long-term stability up to 91.69% of the discharge capacity after 200 cycles of charge/discharge process.

5.
J Biomed Mater Res A ; 110(11): 1749-1760, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35770845

RESUMEN

This study was focused on the development of biodegradable nano-adhesives with efficient sealing and antibiotic effects for wound healing. Biodegradable polyaspartamide (PASPAM) was grafted with several functional groups to implement diverse roles-octadecylamine (C18 ) for nano-aggregate formation, dopamine (DOPA) for adhesive function, neomycin (NEO) for inhibition of bacterial infection. Specifically, NEO was conjugated to PASPAM with a pH-sensitive glycine (GLY) linker for targeted delivery on the acidic wound site. About 60% of the drug was ramteleased at pH 6.0, while about 22% was released at pH 7.4, showing the faster drug release pattern of nano-adhesives in the acidic environment. The C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives showed the bacterial viability higher than 70% at pH 7.4, but about 40% at pH 6.0. The wound breaking strength of the polymer-treated skin was much higher than that of the bare skin. According to the in vivo wound healing test using a mouse model, C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives showed much faster healing performance than sutures. From those results, C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives are expected to be utilized as effective adhesives that promote the wound healing with inhibition of bacterial infection.


Asunto(s)
Adhesivos , Adhesivos Tisulares , Adhesivos/farmacología , Antibacterianos/farmacología , Dihidroxifenilalanina/farmacología , Dopamina/farmacología , Glicina , Neomicina/farmacología , Adhesivos Tisulares/farmacología , Cicatrización de Heridas
6.
Membranes (Basel) ; 12(5)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35629847

RESUMEN

•OH radicals are the main cause of chemical degradation of Nafion membranes in fuel cell operation. Although the cerium ion (Ce3+/4+, Ce) is reported as an effective •OH radical quencher, its membrane application has critical limitations associated with the reduction of membrane proton conductivity and its leaking. In this study, the Ce-grafted graphitic carbon nitrides (g-C3N4) (CNCe) nano-particles are synthesized and embedded in Nafion membranes to prolong the •OH radical scavenging effect. The synthesis of CNCe nano-particles is evaluated by X-ray diffraction, energy dispersive X-ray analysis, and transmission electron microscopy. Compared with the pristine and Ce-blended Nafion membranes, the CNCe imbedded ones show tremendous improvement in long-term anti-oxidation stability. While the fluoride emission rates of Nafion are 0.0062 mg·cm-2·h-1 at the anode and 0.0034 mg·cm-2·h-1 at the cathode, those of Nafion/CNCe membranes are 0.0037 mg·cm-2·h-1 at the anode and 0.0023 mg·cm-2·h-1 at the cathode. The single cell test for Nafion/CNCe membranes at 80 °C and 50% relative humidity illustrates much better durability than those for Nafion and Nafion/Ce, indicating its superior scavenging effect on •OH radicals.

7.
Nat Commun ; 13(1): 3019, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641519

RESUMEN

For the practical use of synthetic hydrogels as artificial biological tissues, flexible electronics, and conductive membranes, achieving requirements for specific mechanical properties is one of the most prominent issues. Here, we demonstrate superstrong, superstiff, and conductive alginate hydrogels with densely interconnecting networks implemented via simple reconstructing processes, consisting of anisotropic densification of pre-gel and a subsequent ionic crosslinking with rehydration. The reconstructed hydrogel exhibits broad ranges of exceptional tensile strengths (8-57 MPa) and elastic moduli (94-1,290 MPa) depending on crosslinking ions. This hydrogel can hold sufficient cations (e.g., Li+) within its gel matrix without compromising the mechanical performance and exhibits high ionic conductivity enough to be utilized as a gel electrolyte membrane. Further, this strategy can be applied to prepare mechanically outstanding, ionic-/electrical-conductive hydrogels by incorporating conducting polymer within the hydrogel matrix. Such hydrogels are easily laminated with strong interfacial adhesion by superficial de- and re-crosslinking processes, and the resulting layered hydrogel can act as a stable gel electrolyte membrane for an aqueous supercapacitor.


Asunto(s)
Alginatos , Hidrogeles , Conductividad Eléctrica , Iones , Polímeros , Resistencia a la Tracción
8.
Molecules ; 27(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35056678

RESUMEN

Alkaline stable anion exchange membranes based on the cross-linked poly(arylene ether sulfone) grafted with dual quaternary piperidine (XPAES-DP) units were synthesized. The chemical structure of the synthesized PAES-DP was validated using 1H-NMR and FT-IR spectroscopy. The physicochemical, thermal, and mechanical properties of XPAES-DP membranes were compared with those of two linear PAES based membranes grafted with single piperidine (PAES-P) unit and conventional trimethyl amine (PAES-TM). XPAES-DP membrane showed the ionic conductivity of 0.021 S cm-1 at 40 °C which was much higher than that of PAES-P and PAES-TM because of the possession of more quaternary ammonium groups in the cross-linked structure. This cross-linked structure of the XPAES-DP membrane resulted in a higher tensile strength of 18.11 MPa than that of PAES-P, 17.09 MPa. In addition, as the XPAES-DP membrane shows consistency in the ionic conductivity even after 96 h in 3 M KOH solution with a minor change, its chemical stability was assured for the application of anion exchange membrane fuel cell. The single-cell assembled with XPAES-DP membrane displayed a power density of 109 mWcm-2 at 80 °C under 100% relative humidity.

9.
Polymers (Basel) ; 13(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807485

RESUMEN

A successful approach towards enhancement in ion cluster size of sulfonated poly (arylene ether sulfone) (SPAES)-based membranes has been successfully carried out by encapsulating basic pendent branches as side groups. Modified SPAES was synthesized by condensation polymerization followed by bromination with N-bromosuccinamide (NBS) and sulfonation by ring opening reaction. Various molar ratios of branched polyethyleneimine (PEI) were added to the SPAES and the developed polymer was designated as SPAES-x-PEI-y, where x denoted the number of sulfonating acid group per polymer chain and y represents the amount of PEI concentration. Polymer synthesis was characterized by 1H-NMR (Nuclear magnetic resonance) and FT-IR (Fourier-transform infrared spectroscopy) analysis. A cumulative trend involving enhanced proton conductivity of the membranes with an increase in the molar ratio of PEI has been observed, clearly demonstrating the formation of ionic clusters. SPAES-140-PEI-3 membranes show improved proton conductivity of 0.12 Scm-1 at 80 °C. Excellent chemical stability was demonstrated by the polymer with Fenton's test at 80 °C for 24 h without significant loss in proton conductivity, owing to the suitability of the synthesized hybrid membrane for electrochemical application. Moreover, a single cell degradation test was conducted at 80 °C showing a power density at a 140 mWcm-2 value, proving the stable nature of synthesized membranes for proton exchange membrane fuel cell application.

10.
Membranes (Basel) ; 11(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805306

RESUMEN

Recently, polymer electrolyte membranes have been used in various electrochemical energy devices and other applications, such as fuel cells, lithium secondary batteries, redox flow batteries, electrodialysis, and membrane capacitive deionization [...].

11.
Membranes (Basel) ; 11(4)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800616

RESUMEN

Investigation of the collaborative effect of cerium particles embedded in graphene oxide to enhance the chemical stability of a proton exchange membrane fuel cell (PEMFC) has been carried out. Synthesis of composite membranes (Nafion-GO/Ce-x) with Nafion solution as a polymer is synthesized by a solution casting method where (x = concentration of composite). The developed hybrid material was characterized by FT-IR and X-ray diffraction (XRD) for its phase identification while the chemical structure was characterized by XPS analysis. The enhancement in the chemical stability of the incorporated hybrid material is characterized by Fenton's test showing a radical scavenging effect. It was found that the residual weight for Nafion 212 was 92.50% after 24 h and it was 94.32% for Nafion-GO/Ce-2 and 96.49% for Nafion-GO/Ce-4, proving the suitability of composite membranes for fuel cell applications.

12.
Biomater Sci ; 9(5): 1660-1667, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33409517

RESUMEN

Nanoparticles with bone targeting ability and pH-sensitivity were prepared with polyaspartamide (PASPAM) derivatives based on polysuccinimide (PSI) grafted with octadecylamine (C18), hydrazine (HYD) and polyethylene glycol (PEG, Mw: 5000). For the bone targeting, alendronate (ALN), which has bone affinity, was grafted to PEG and doxorubicin (DOX) was conjugated with linkers of acid sensitive hydrazone bonds, which can be cleaved most effectively in an intracellular acidic environment. At pH 5.0, ∼75% of the drug was released from ALN-PEG/C18/HYD-DOX-g-PASPAM due to the effective cleavage of HYD under the acidic condition. Also, ALN-PEG/C18/HYD-DOX-g-PASPAM particles were more effectively adsorbed on the surface of bone than PEG/C18/HYD-DOX-g-PASPAM. According to an in vivo antitumor activity test, the volume of tumor treated with ALN-PEG/C18/HYD-DOX-g-PASPAM decreased (1550 mm3) when compared with the PBS control sample (3850 mm3), proving that ALN-PEG/C18/HYD-DOX-g-PASPAM is an effective drug delivery system for the treatment of bone metastasis of breast cancer.


Asunto(s)
Doxorrubicina , Polímeros , Línea Celular Tumoral , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Polietilenglicoles
13.
Membranes (Basel) ; 10(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333968

RESUMEN

This present work focused on the aromatic polymer (poly (1,4-phenylene ether-ether-sulfone); SPEES) interconnected/ cross-linked with the aliphatic monomer (2-acrylamido-2-methyl-1-propanesulfonic; AMPS) with the sulfonic group to enhance the conductivity and make it flexible with aliphatic chain of AMPS. Surprisingly, it produced higher conductivity than that of other reported work after the chemical stability was measured. It allows optimizing the synthesis of polymer electrolyte membranes with tailor-made combinations of conductivity and stability. Membrane structure is characterized by 1H NMR and FT-IR. Weight loss of the membrane in Fenton's reagent is not too high during the oxidative stability test. The thermal stability of the membrane is characterized by TGA and its morphology by SEM and SAXS. The prepared membranes improved proton conductivity up to 0.125 Scm-1 which is much higher than that of Nafion N115 which is 0.059 Scm-1. Therefore, the SPEES-AM membranes are adequate for fuel cell at 50 °C with reduced relative humidity (RH).

14.
Membranes (Basel) ; 10(7)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629946

RESUMEN

A novel anion exchange membrane was synthesized via crosslinking of the quaternized polyepichlorohydrin (QPECH) by 1-(3-aminopropyl) imidazole grafted poly(arylene ether ketone) (PAEK-API). While the QPECH provided an excellent ion conductive property, the rigid rod-structured PAEK-API played a reinforcing role, along with providing the high conductivity associated with the pendant API group. The chemical structure of QPECH/PAEK-API membranes was identified by 1H nuclear magnetic resonace spectroscopy. A variety of membrane properties, such as anion conductivity, water uptake, length swelling percentage, and thermal, mechanical and chemical stability, were investigated. The QPECH/PAEK-API1 membrane showed quite high hydroxide ion conductivity, from 0.022 S cm-1 (30 °C) to 0.033 S cm-1 (80 °C), and excellent mechanical strength, associated with the low water uptake of less than 40%, even at 80 °C. Such high conductivity at relatively low water uptake is attributed to the concentrated cationic groups, in a cross-linked structure, facilitating feasible ion transport. Further, the QPECH/PAEK-API membranes showed thermal stability up to 250 °C, and chemical stability for 30 days in a 4 NaOH solution, without significant loss of ion exchange capacity.

15.
Nanotechnology ; 31(33): 335712, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32357358

RESUMEN

We integrate superparamagnetic iron oxide nanoparticles with polyaspartamide (PA) biopolymer to form a biological construct that functions as a tracking, targeting and drug-delivery system for cancer diagnosis and therapy. Iron oxide nanoparticles with uniformly distributed average spherical diameters of around 10 nm and superparamagnetic characteristics play a key role in increasing the transverse 1/T 2 relaxation rate or darkening the T 2-weighted MR image for cancer diagnosis using MRI. In in vitro MRI testing on cancer cells, the MR images of samples with the bio-constructshow a much clearer contrast effect than those of controls. The PA biopolymer plays an essential role in enhancing the hydrophilicity and biocompatibility of the bio-construct. In addition, as a multifunctional polymer, PA is conjugated with biotin and doxorubicin (Dox) functional groups to enhance targeting and impairment of cancer cells. In in vivo testing on cancer tumors, injection with the bio-construct decreased the magnitude of cancer tumor volume growth by three times compared with that of uninjected controls. The physicochemical characteristics of the bio-construct and the roles of biotin and Dox functional groups are examined and discussed in detail.


Asunto(s)
Antineoplásicos/administración & dosificación , Biopolímeros/administración & dosificación , Biotina/química , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Medios de Contraste/administración & dosificación , Células 3T3 , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Biopolímeros/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/química , Doxorrubicina , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Molecules ; 26(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396503

RESUMEN

A series of hybrid proton exchange membranes were synthesized via in situ polymerization of poly (2-acrylamido-2-methyl-1-propanesulfonic acid) PMPS with sulfonated poly (1,4-phenylene ether-ether-sulfone) (SPEES). The insertion of poly (2-acrylamido-2-methyl-1-propanesulfonic acid) PMPS, between the rigid skeleton of SPEES plays a reinforcing role to enhance the ionic conductivity. The synthesized polymer was chemically characterized by fourier-transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance 1H NMR spectroscopy to demonstrate the successful grafting of PMPS with the pendent polymer chain of SPEES. A variety of physicochemical properties were also investigated such as ion exchange capacity (IEC), proton conductivity, water uptake and swelling ratio to characterize the suitability of the formed polymer for various electrochemical applications. SP-PMPS-03, having the highest concentration of all PMPS, shows excellent proton conductivity of 0.089 S cm-1 at 80 °C which is much higher than SPEES which is ~0.049 S cm-1. Optimum water uptake and swelling ratio with high conductivity is mainly attributed to a less ordered arrangement polymer chain with high density of the functional group to facilitate ionic transport. The residual weight was 93.35, 92.44 and 89.56%, for SP-PMPS-01, 02 and 03, respectively, in tests with Fenton's reagent after 24 h. In support of all above properties a good chemical and thermal stability was also achieved by SP-PMPS-03, owing to the durability for electrochemical application.


Asunto(s)
Acrilamidas/química , Alcanosulfonatos/química , Conductividad Eléctrica , Sustancias Intercalantes/química , Membranas Artificiales , Polímeros/química , Protones , Sulfonas/química , Iones
17.
RSC Adv ; 10(60): 36704-36712, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35517919

RESUMEN

A series of quaternized polyphenylene oxide (QPPO) based alkaline electrolyte membranes with different degrees of quaternization were synthesized via a benzyl bromination method at mild temperature (75 °C). Quite a high hydroxide conductivity under the reduced water uptake and swelling was exhibited by this method. When the degree of bromination measured from 1H NMR analysis was 30%, the corresponding hydroxide ion conductivity was 0.021 S cm-1. The chemical stability of the QPPO membranes was excellent, showing only 3% weight loss in 3 M NaOH solution during 1 month. The fuel cell performance test under H2/O2 exhibited the power density of 77 mW cm-2 and the current density of 190 mA cm-2 at 70 °C. Such excellent properties of QPPO membranes resulted from the achievement of the quaternization at the benzyl position, specifically.

18.
ACS Macro Lett ; 9(7): 1013-1018, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35648613

RESUMEN

The ionic conductivity of polymer electrolyte membranes (PEMs) is an essential parameter for their device applications. In water-swollen PEMs, protons and other ions are transferred through hydrophilic channels of a few nanometers in diameter at most. Thus, optimizing the chemical and physical properties of the channels can enhance the conductivity of PEMs. However, the factors controlling the conductivity have not been completely clarified. Here, we report that measurements taken near the channel walls by a special nuclear magnetic resonance technique with ≤1 nm spatial resolution showed the largest water diffusivity when ∼80% of hydrophilic sulfonic acid groups were blocked, but the proton conductivity was low. The water diffusivity was much less affected by differences in water content. Our results provide a concept for changing the properties of PEMs and a challenge to implement the improved diffusivity in a way that enhances net ion conductivity.

19.
Langmuir ; 35(50): 16624-16629, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31747515

RESUMEN

A free-standing ion-conductive gel is formed by spontaneous self-assembly of the amphiphilic ionic liquid 1-tetradecyl-3-methylimidazolium chloride (C14MIm·Cl) and the cross-linkable monomer 6-hexanediol diacrylate (HDODA) in a mixed solvent of 1-octene, 1-butanol, and water. The ionic conductivity of this ion gel is 24 mS cm-1 at 33 °C. To enhance the mechanical strength of the ion gels, the acrylate ionic liquid 1-(2-acryloyloxyundecyl)-3-methylimidazolium bromide (A-C11MIm·Br) was added, leading to significant morphological changes of the HDODA phase from spherical, ellipsoid, angular platelets to interconnected with increasing addition of the acrylate ionic liquid and consequent enhancement in the mechanical strength of the resulting ion gels. Small angle X-ray scattering data reveal that the ion gels are composed of bicontinuous phase. The formation of the anisotropic HDODA structures upon introduction of the acrylate ionic liquid was accompanied by a change of the bicontinuous phase to be undulated, which increased the ionic path through the formed film, resulting in reduced ionic conductivity. Such coaxial structured gels may be a promising route for developing highly ion-conductive as well as mechanically stable solid electrolyte systems.

20.
Mater Sci Eng C Mater Biol Appl ; 101: 464-471, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31029341

RESUMEN

Curcumin shows a potential anticancer activity, as it is involved in signaling pathway suppressing ß-catenin response transcription. In this study, the effects of curcumin released from the biocompatible and biodegradable polyaspartamide based micelles on colon cancer treatment via the Wnt/ß-catenin signaling pathway are investigated. Hydrophobic octadecylamine (C18) and hydrophilic O-(2-aminoethyl) polyethylene glycol (PEG) were grafted on a polysuccinimide (PSI) backbone for micelle formation. Folic acid (FA) was employed to facilitate the targeting activity to colon cancer cells and curcumin was conjugated via acid cleavable linkage, hydrazone (Hyd) to provide the pH sensitive drug release. Two types of micellar structures, Folate-PEG/Hyd-Curcumin/C18-g-PSI (FA-Cur) and PEG/Hyd-Curcumin/C18-g-PSI (NFA-Cur), were synthesized and their chemical structure was identified by 1H NMR spectroscopy. The cytotoxicity carried out by MTT assay informed that the cell viability of FA-Cur treated SW480 was much lower than that of NFA-Cur treated one at the concentration > 0.25 µg mL-1. Western blot assay showed that FA-Cur inhibited the target genes, cyclin D1 and c-myc, more strongly than NFA-Cur at the concentration > 0.5 µg mL-1. From these results, FA-Cur micelles are expected to be a promising candidate for colon anti-cancer via inhibiting Wnt/ß-catenin pathway.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias del Colon/metabolismo , Curcumina/química , Curcumina/farmacología , Ácido Fólico/análogos & derivados , Micelas , Polietilenglicoles/química , Vía de Señalización Wnt/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ácido Fólico/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...