Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4547, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806514

RESUMEN

Efficient photovoltaic devices must be efficient light emitters to reach the thermodynamic efficiency limit. Here, we present a promising prospect of perovskite photovoltaics as bright emitters by harnessing the significant benefits of photon recycling, which can be practically achieved by suppressing interfacial quenching. We have achieved radiative and stable perovskite photovoltaic devices by the design of a multiple quantum well structure with long (∼3 nm) organic spacers with oleylammonium molecules at perovskite top interfaces. Our L-site exchange process (L: barrier molecule cation) enables the formation of stable interfacial structures with moderate conductivity despite the thick barriers. Compared to popular short (∼1 nm) Ls, our approach results in enhanced radiation efficiency through the recursive process of photon recycling. This leads to the realization of radiative perovskite photovoltaics with both high photovoltaic efficiency (in-lab 26.0%, certified to 25.2%) and electroluminescence quantum efficiency (19.7 % at peak, 17.8% at 1-sun equivalent condition). Furthermore, the stable crystallinity of oleylammonium-based quantum wells enables our devices to maintain high efficiencies for over 1000 h of operation and >2 years of storage.

2.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38475280

RESUMEN

We report chemically tunable n-type titanium oxides using ethanolamine as a nitrogen dopant source. As the amount of ethanolamine added to the titanium oxide precursor during synthesis increases, the Fermi level of the resulting titanium oxides (ethanolamine-incorporated titanium oxides) significantly changes from -4.9 eV to -4.3 eV, and their free charge carrier densities are enhanced by two orders of magnitudes, reaching up to 5 × 1018 cm-3. Unexpectedly, a basic ethanolamine reinforces not only the n-type properties of titanium oxides, but also their basicity, which facilitates acid-base ionic junctions in contact with acidic materials. The enhanced charge carrier density and basicity of the chemically tuned titanium oxides enable multi-junction solar cells to have interconnecting junctions consisting of basic n-type titanium oxides and acidic p-type PEDOT:PSS to gain high open-circuit voltages of 1.44 V and 2.25 V from tandem and triple architectures, respectively.

3.
Adv Sci (Weinh) ; 10(20): e2300728, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37144510

RESUMEN

The important but remained issue to be addressed to achieve the mass production of perovskite solar modules include a large-area fabrication of high-quality perovskite film with eco-friendly, viable production methods. Although several efforts are made to achieve large-area fabrication of perovskite, the development of eco-friendly solvent system, which is precisely designed to be fit to scale-up methods are still challenging. Herein, this work develops the eco-friendly solvent/co-solvent system to produce a high-quality perovskite layer with a bathing in eco-friendly antisolvent. The new co-solvent/additive, methylsulfonylmethane (MSM), efficiently improves the overall solubility and has a suitable binding strength to the perovskite precursor, resulting in a high-quality perovskite film with antisolvent bathing method in large area. The resultant perovskite solar cells showed high power conversion efficiency of over 24% (in reverse scan), with a good long-term stability under continuous light illumination or damp-heat condition. MSM is also beneficial to produce a perovskite layer at low-temperature or high-humidity. MSM-based solvent system is finally applied to large-area, resulting in highly efficiency perovskite solar modules with PCE of 19.9% (by aperture) or 21.2% (by active area) in reverse scan. These findings contribute to step forward to a mass production of perovskite solar modules with eco-friendly way.

4.
Small Methods ; 5(5): e2001248, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34928076

RESUMEN

Perovskite solar cells in an n-i-p structure record high power conversion efficiency, but issues of insufficient thermal stability and the high cost of p-type hole transporting materials have been raised as drawbacks. H2 -phthalocyanine (Pc) is introduced as a hole transport material to ensure the thermal stability and simultaneously have served surface passivation effects on hybrid halide perovskites as a Lewis base. Pyrrolic nitrogen in the Pc reacts with uncoordinated Pb2+ ions on the perovskite surface. Upon enhancing the interfacial interaction between phthalocyanine and the perovskite, the open circuit voltage in devices increases as compared to that of devices using a metal-phthalocyanine complex. While the phthalocyanine-applied device maintains superior thermal long-term stability, the power conversion efficiency also exceeds 20%.

6.
ACS Appl Mater Interfaces ; 13(26): 30497-30503, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34170671

RESUMEN

This report addresses indium oxide doped with titanium and tantulum with high near-infrared transparency to potentially replace the conventional indium tin oxide transparent electrode used in semitransparent perovskite devices and top cells of tandem devices. The high near-infrared transparency of this electrode is possibly explained by the lower carrier concentration, suggesting less defect sites that may sacrifice its optical transparency. Incorporating this transparent electrode into semitransparent perovskite solar cells for both the top and bottom electrodes improved the device performance through possible reduction of interfacial defect sites and modification in energy alignment. With this indium oxide-based semitransparent perovskite top cell, we also demonstrated four-terminal perovskite-silicon tandem configurations with improved photocurrent response in the bottom silicon cell.

7.
Nature ; 594(7861): 51-56, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079136

RESUMEN

In perovskite solar cells, doped organic semiconductors are often used as charge-extraction interlayers situated between the photoactive layer and the electrodes. The π-conjugated small molecule 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-spirobifluorene (spiro-OMeTAD) is the most frequently used semiconductor in the hole-conducting layer1-6, and its electrical properties considerably affect the charge collection efficiencies of the solar cell7. To enhance the electrical conductivity of spiro-OMeTAD, lithium bis(trifluoromethane)sulfonimide (LiTFSI) is typically used in a doping process, which is conventionally initiated by exposing spiro-OMeTAD:LiTFSI blend films to air and light for several hours. This process, in which oxygen acts as the p-type dopant8-11, is time-intensive and largely depends on ambient conditions, and thus hinders the commercialization of perovskite solar cells. Here we report a fast and reproducible doping method that involves bubbling a spiro-OMeTAD:LiTFSI solution with CO2 under ultraviolet light. CO2 obtains electrons from photoexcited spiro-OMeTAD, rapidly promoting its p-type doping and resulting in the precipitation of carbonates. The CO2-treated interlayer exhibits approximately 100 times higher conductivity than a pristine film while realizing stable, high-efficiency perovskite solar cells without any post-treatments. We also show that this method can be used to dope π-conjugated polymers.

8.
Small ; 17(3): e2005608, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33354931

RESUMEN

Ionic defects (e.g., organic cations and halide anions), preferably residing along grain boundaries (GBs) and on perovskite film surfaces, are known to be a major source of the notorious environmental instability of perovskite solar cells (PeSCs). Although passivating ionic defects is desirable, previous approaches using Lewis base or acid molecules as additives suppress only the negatively or positively charged defects, thus leaving oppositely charged defects. In this work, both the cationic and anionic defects inside methyl ammonium lead tri-iodide (MAPbI3 ) are simultaneously passivated by introducing a zwitterionic form of the amino acid, L-alanine, into the precursor solution as an additive. L-alanine has both positive (NH3+ ) and negative (COO- ) functional groups at a specific solvent pH, thereby passivating both the cation and anion defects in MAPbI3 . The addition of L-alanine increases the grain size of the perovskite crystals and lengthens the charge carrier lifetime (τ > 1 µs), leading to improved power conversion efficiencies (PCEs) of 20.3% (from 18.3% without an additive) for small-area (4.64 mm2 ) devices and 15.6% (from 13.5%) for large-area submodules (9.06 cm2 ). More importantly, the authors' approach also significantly enhances the shelf storage and photoirradiation stabilities of PeSCs.

9.
Sci Adv ; 4(8): eaat3604, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30128356

RESUMEN

Realizing industrial-scale, large-area photovoltaic modules without any considerable performance losses compared with the performance of laboratory-scale, small-area perovskite solar cells (PSCs) has been a challenge for practical applications of PSCs. Highly sophisticated patterning processes for achieving series connections, typically fabricated using printing or laser-scribing techniques, cause unexpected efficiency drops and require complicated manufacturing processes. We successfully fabricated high-efficiency, large-area PSC modules using a new electrochemical patterning process. The intrinsic ion-conducting features of perovskites enabled us to create metal-filamentary nanoelectrodes to facilitate the monolithic serial interconnections of PSC modules. By fabricating planar-type PSC modules through low-temperature annealing and all-solution processing, we demonstrated a notably high module efficiency of 14.0% for a total area of 9.06 cm2 with a high geometric fill factor of 94.1%.

10.
Adv Mater ; 29(22)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28394417

RESUMEN

Despite the recent unprecedented increase in the power conversion efficiencies (PCEs) of small-area devices (≤0.1 cm2 ), the PCEs deteriorate drastically for PSCs of larger areas because of the incomplete film coverage caused by the dewetting of the hydrophilic perovskite precursor solutions on the hydrophobic organic charge-transport layers (CTLs). Here, an innovative method of fabricating scalable PSCs on all types of organic CTLs is reported. By introducing an amphiphilic conjugated polyelectrolyte as an interfacial compatibilizer, fabricating uniform perovskite films on large-area substrates (18.4 cm2 ) and PSCs with the total active area of 6 cm2 (1 cm2 × 6 unit cells) via a single-turn solution process is successfully demonstrated. All of the unit cells exhibit highly uniform PCEs of 16.1 ± 0.9% (best PCE of 17%), which is the highest value for printable PSCs with a total active area larger than 1 cm2 .

11.
ACS Appl Mater Interfaces ; 9(1): 819-826, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-27990796

RESUMEN

Stretchable conductive materials have received great attention owing to their potential for realizing next-generation stretchable electronics. However, the simultaneous achievement of excellent mechanical stretchability and high electrical conductivity as well as cost-effective fabrication has been a significant challenge. Here, we report a highly stretchable and highly conducting polymer that was obtained by incorporating an ionic liquid. When 1-ethyl-3-methylimidazolium tetracyanoborate (EMIM TCB) was added to an aqueous conducting polymer solution of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), it was found that EMIM TCB acts not only as a secondary dopant but also as a plasticizer for PEDOT:PSS, resulting in a high conductivity of >1000 S cm-1 with stable performance at tensile strains up to 50% and even up to 180% in combination with the prestrained substrate technique. Consequently, by exploiting the additional benefits of high transparency and solution-processability of PEDOT:PSS, we were able to fabricate a highly stretchable, semitransparent, and wholly solution-processed alternating current electroluminescent device with unimpaired performance at 50% strain by using PEDOT:PSS/EMIM TCB composite films as both bottom and top electrodes.

12.
Proc Natl Acad Sci U S A ; 113(50): 14261-14266, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911774

RESUMEN

Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future "flexible" and "transparent" electronics (FTEs). Here, by blending only a small amount (∼15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes.

13.
Adv Mater ; 28(36): 7821-7861, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27345936

RESUMEN

The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk-heterojunction organic solar cells (OSCs) based on nanocomposites of π-conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost-effective, stable, and high-performance photovoltaic modules fabricated on large-area flexible plastic substrates via high-volume/throughput roll-to-roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large-scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state-of-the-art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques.

14.
Adv Mater ; 28(16): 3159-65, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26917008

RESUMEN

Highly efficient P-I-N type perovskite/bulk-heterojunction (BHJ) integrated solar cells (ISCs) with enhanced fill factor (FF) (≈80%) and high near-infrared harvesting (>30%) are demonstrated by optimizing the BHJ morphology with a novel n-type polymer, N2200, and a new solvent-processing additive. This work proves the feasibility of highly efficient ISCs with panchromatic absorption as a new photovoltaic architecture and provides important design rules for optimizing ISCs.

15.
ACS Appl Mater Interfaces ; 8(9): 6144-51, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26901273

RESUMEN

Recently, the most efficient tandem polymer solar cells (PSCs) have used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) as a p-type component of recombination layer (RL). However, its undesirable acidic nature, originating from insulating PSS, of PEDOT: PSS drastically reduces the lifetime of PSCs. Here, we demonstrate the efficient and stable tandem PSCs by introducing acid-free self-doped conducting polymer (SCP), combined with zinc oxide nanoparticles (ZnO NPs), as RL for PEDOT: PSS-free tandem PSCs. Moreover, we introduce an innovative and versatile nanocomposite system containing photoactive and p-type conjugated polyelectrolyte (p-CPE) into the tandem fabrication of an ideal self-organized recombination layer. In our new RL, highly conductive SCP facilitates charge transport and recombination process, and p-CPE helps to achieve nearly loss-free charge collection by increasing effective work function of indium tin oxide (ITO) and SCP. Because of the synergistic effect of extremely low electrical resistance, ohmic contact, and pH neutrality, tandem devices with our novel RL performed well, exhibiting a high power conversion efficiency of 10.2% and a prolonged lifetime. These findings provide a new insight for strategic design of RLs using SCPs to achieve efficient and stable tandem PSCs and enable us to review and extend the usefulness of SCPs in various electronics research fields.

16.
Nat Commun ; 7: 10279, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26728507

RESUMEN

The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm(2).

17.
Adv Mater ; 27(43): 6870-7, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26425962

RESUMEN

Nucleation and growth processes can be effectively controlled in organic semiconductor films through a new concept of template-mediated molecular crystal seeds during the phase transition; the effective control of these processes ensures millimeter-scale crystal domains, as well as the performance of the resulting organic films with intrinsic hole mobility of 18 cm(2) V(-1) s(-1).

18.
Nat Commun ; 6: 6503, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25790133

RESUMEN

Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of 'polymer-metal hybrid electrodes' with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq(-1). These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

19.
Adv Mater ; 27(8): 1408-13, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25449142

RESUMEN

A new tandem architecture for printable photovoltaics using a versatile organic nanocomposite containing photoactive and interfacial materials is demonstrated. The nanocomposite forms an ideal self-organized recombination layer via a spontaneous vertical phase separation, which yields a simplified tandem structure fabricated with only four component layers and a high tandem efficiency of 10.8%.

20.
Nat Commun ; 5: 5688, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25483206

RESUMEN

The inferior long-term stability of polymer-based solar cells needs to be overcome for their commercialization to be viable. In particular, an abrupt decrease in performance during initial device operation, the so-called 'burn-in' loss, has been a major contributor to the short lifetime of polymer solar cells, fundamentally impeding polymer-based photovoltaic technology. In this study, we demonstrate polymer solar cells with significantly improved lifetime, in which an initial burn-in loss is substantially reduced. By isolating trap-embedded components from pristine photoactive polymers based on the unimodality of molecular weight distributions, we are able to selectively extract a trap-free, high-molecular-weight component. The resulting polymer component exhibits enhanced power conversion efficiency and long-term stability without abrupt initial burn-in degradation. Our discovery suggests a promising possibility for commercial viability of polymer-based photovoltaics towards real solar cell applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...