Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6459-6471, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38726868

RESUMEN

CRISPR-Cas systems serve as adaptive immune systems in bacteria and archaea, protecting against phages and other mobile genetic elements. However, phages and archaeal viruses have developed countermeasures, employing anti-CRISPR (Acr) proteins to counteract CRISPR-Cas systems. Despite the revolutionary impact of CRISPR-Cas systems on genome editing, concerns persist regarding potential off-target effects. Therefore, understanding the structural and molecular intricacies of diverse Acrs is crucial for elucidating the fundamental mechanisms governing CRISPR-Cas regulation. In this study, we present the structure of AcrIIA28 from Streptococcus phage Javan 128 and analyze its structural and functional features to comprehend the mechanisms involved in its inhibition of Cas9. Our current study reveals that AcrIIA28 is a metalloprotein that contains Zn2+ and abolishes the cleavage activity of Cas9 only from Streptococcus pyrogen (SpyCas9) by directly interacting with the REC3 domain of SpyCas9. Furthermore, we demonstrate that the AcrIIA28 interaction prevents the target DNA from being loaded onto Cas9. These findings indicate the molecular mechanisms underlying AcrIIA28-mediated Cas9 inhibition and provide valuable insights into the ongoing evolutionary battle between bacteria and phages.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Fagos de Streptococcus , Streptococcus , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/química , ADN/metabolismo , ADN/genética , Edición Génica , Metaloproteínas/metabolismo , Metaloproteínas/genética , Metaloproteínas/química , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Streptococcus/genética , Streptococcus/virología , Fagos de Streptococcus/genética , Fagos de Streptococcus/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/química , Zinc/metabolismo
2.
Nucleic Acids Res ; 50(19): 11344-11358, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36243977

RESUMEN

CRISPR-Cas systems are adaptive immune systems in bacteria and archaea that provide resistance against phages and other mobile genetic elements. To fight against CRISPR-Cas systems, phages and archaeal viruses encode anti-CRISPR (Acr) proteins that inhibit CRISPR-Cas systems. The expression of acr genes is controlled by anti-CRISPR-associated (Aca) proteins encoded within acr-aca operons. AcrIF24 is a recently identified Acr that inhibits the type I-F CRISPR-Cas system. Interestingly, AcrIF24 was predicted to be a dual-function Acr and Aca. Here, we elucidated the crystal structure of AcrIF24 from Pseudomonas aeruginosa and identified its operator sequence within the regulated acr-aca operon promoter. The structure of AcrIF24 has a novel domain composition, with wing, head and body domains. The body domain is responsible for recognition of promoter DNA for Aca regulatory activity. We also revealed that AcrIF24 directly bound to type I-F Cascade, specifically to Cas7 via its head domain as part of its Acr mechanism. Our results provide new molecular insights into the mechanism of a dual functional Acr-Aca protein.


Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Bacteriófagos/genética , Pseudomonas aeruginosa/metabolismo , Operón/genética
3.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 59-68, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34981762

RESUMEN

CRISPR-Cas systems are well known host defense mechanisms that are conserved in bacteria and archaea. To counteract CRISPR-Cas systems, phages and viruses have evolved to possess multiple anti-CRISPR (Acr) proteins that can inhibit the host CRISPR-Cas system via different strategies. The expression of acr genes is controlled by anti-CRISPR-associated (Aca) proteins that bind to an upstream promoter and regulate the expression of acr genes during transcription. Although the role of Aca as a transcriptional repressor has been demonstrated, the mechanism of action of Aca has not been determined. Here, the molecular mechanism underlying the Aca2-mediated transcriptional control of acr genes was elucidated by determining the crystal structure of Aca2 from Oceanimonas smirnovii at a high resolution of 1.92 Å. Aca2 forms a dimer in solution, and dimerization of Aca2 is critical for specific promoter binding. The promoter-binding strategy of dimeric Aca2 was also revealed by performing mutagenesis studies. The atomic structure of the Aca family shown in this study provides insights into the fine regulation of host defense and immune-escape mechanisms and also demonstrates the conserved working mechanism of the Aca family.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Complejo Relacionado con el SIDA , Aeromonadaceae , Proteínas Asociadas a CRISPR/química , Cristalografía por Rayos X , Represión Epigenética , Estructura Molecular , Mutagénesis , Regiones Promotoras Genéticas , Transcripción Genética
4.
IUCrJ ; 8(Pt 6): 921-930, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34804545

RESUMEN

Peptidoglycan digestion by murein-degrading enzymes is a critical process in bacterial cell growth and/or cell division. The membrane-bound lytic murein transglycosylase A (MltA) is a murein-degrading enzyme; it catalyzes the cleavage of the ß-1,4-glycosidic linkage between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycans. Although substrate recognition and cleavage by MltA have been examined by previous structural and mutagenesis studies, the overall mechanism of MltA in conjunction with other functionally related molecules on the outer membrane of bacterial cells for peptidoglycan degradation has remained elusive. In this study, the crystal structure of MltA from the virulent human pathogen Acinetobacter baumannii is characterized and presented. The study indicated that MltA from A. baumannii forms homodimers via an extra domain which is specific to this species. Furthermore, the working mechanism of MltA with various functionally related proteins on the bacterial outer membrane was modeled based on the structural and biochemical analysis.

5.
Protein Sci ; 30(12): 2474-2481, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34676610

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs)-CRISPR-associated protein systems are bacterial and archaeal defense mechanisms against invading elements such as phages and viruses. To overcome these defense systems, phages and viruses have developed inhibitors called anti-CRISPRs (Acrs) that are capable of inhibiting the host CRISPR-Cas system via different mechanisms. Although the inhibitory mechanisms of AcrIIC1, AcrIIC2, and AcrIIC3 have been revealed, the inhibitory mechanisms of AcrIIC4 and AcrIIC5 have not been fully understood and structural data are unavailable. In this study, we elucidated the crystal structure of Type IIC anti-CRISPR protein, AcrIIC4. Our structural analysis revealed that AcrIIC4 exhibited a helical bundle fold comprising four helixes. Further biochemical and biophysical analyses showed that AcrIIC4 formed a monomer in solution, and monomeric AcrIIC4 directly interacted with Cas9 and Cas9/sgRNA complex. Discovery of the structure of AcrIIC4 and their interaction mode on Cas9 will help us elucidate the diversity in the inhibitory mechanisms of the Acr protein family.


Asunto(s)
Antibiosis/genética , Proteínas Bacterianas/química , Proteína 9 Asociada a CRISPR/química , Sistemas CRISPR-Cas , Haemophilus parainfluenzae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Clonación Molecular , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Haemophilus parainfluenzae/metabolismo , Modelos Moleculares , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Biochem Biophys Res Commun ; 533(4): 751-757, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32988588

RESUMEN

As a result of bacterial infection with viruses, bacteria have developed CRISPR-Cas as an adaptive immune system, which allows them to destroy the viral genetic material introduced via infection. However, viruses have also evolved to develop multiple anti-CRISPR proteins, which are capable of inactivating the CRISPR-Cas adaptive immune system to combat bacteria. In this study, we aimed to elucidate the molecular mechanisms associated with anti-CRISPR proteins by determining a high-resolution crystal structure (1.3 Å) of Type I-E anti-CRISPR protein called AcrIE2. Our structural analysis revealed that AcrIE2 was composed of unique folds comprising five antiparallel ß-sheets (ß1∼ß5) surrounding one α-helix (α1) in the order, ß2ß1α1ß5ß4ß3. Structural comparison of AcrIE2 with a structural homolog called AcrIF9 showed that AcrIE2 contained a long and flexible ß4-ß5 connecting loop and a distinct surface feature. These results indicated that the inhibitory mechanism of AcrIE2 might be different from that of AcrIF9. This unique structure of AcrIE2 indicates its special mode of CRISPR-Cas inhibitory activity. Therefore, this study helps us understand the diversity in the inhibitory mechanisms of Acr family.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Pseudomonas aeruginosa/virología , Proteínas Virales/química , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas Virales/metabolismo
7.
FEBS Open Bio ; 10(12): 2532-2540, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32990416

RESUMEN

Prokaryotic adaptive immunity by CRISPR-Cas systems, which confer resistance to foreign genetic elements, has been used by bacteria to combat viruses. To cope, viruses evolved multiple anti-CRISPR proteins, which can inhibit system function through various mechanisms. Although the structures and mechanisms of several anti-CRISPR proteins have been elucidated, those of the AcrIF9 family have not yet been identified. To understand the molecular basis underlying AcrIF9 anti-CRISPR function, we determined the 1.2 Å crystal structure of AcrIF9. Structural and biochemical studies showed that AcrIF9 exists in monomeric form in solution and can directly interact with DNA using a positively charged cleft. Based on analysis of the structure, we suggest part of the anti-CRISPR molecular mechanism by AcrIF9.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Pseudomonas aeruginosa/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/aislamiento & purificación , Proteínas Asociadas a CRISPR/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica
8.
Fish Shellfish Immunol ; 102: 56-63, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32283248

RESUMEN

Conserved immune cell signaling in fish was recently highlighted by the identification of various immune cell signaling molecules. Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins are critical adaptor molecules in immune cell signaling and contain E3 ubiquitin ligase activity. Here, we report the first crystal structure of the TRAF5 TRAF domain from the black rockcod (Notothenia coriiceps; ncTRAF5). Our structure revealed both similarities and differences with mammalian TRAF5. Structural and biochemical analyses indicated that ncTRAF5 forms a functional trimer unit in solution, with a structural flexibility that might be critical for imparting resistance to cold temperature-induced stress. We also found conserved surface residues on ncTRAF5 that might be critical binding hot spots for interaction with various receptors.


Asunto(s)
Enfermedades de los Peces/inmunología , Inmunidad Innata/genética , Perciformes/genética , Perciformes/inmunología , Factor 5 Asociado a Receptor de TNF/genética , Factor 5 Asociado a Receptor de TNF/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Alineación de Secuencia/veterinaria , Transducción de Señal , Factor 5 Asociado a Receptor de TNF/química
9.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210142

RESUMEN

Human transglutaminase 2 (TGase2) has various functions, including roles in various cellular processes such as apoptosis, development, differentiation, wound healing, and angiogenesis, and is linked to many diseases such as cancer. Although TGase2 has been considered an optimized drug target for the treatment of cancer, fibrosis, and neurodegenerative disorders, it has been difficult to generate TGase2-targeted drugs for clinical use because of the relatively flat and broad active site on TGase2. To design more specific and powerful inhibitors, detailed structural information about TGase2 complexed with various effector and inhibitor molecules is required. In this review, we summarized the current structural studies on TGase2, which will aid in designing drugs that can overcome the aforementioned limitations.


Asunto(s)
Proteínas de Unión al GTP/química , Modelos Moleculares , Conformación Proteica , Transglutaminasas/química , Secuencia de Aminoácidos , Sitios de Unión , Diseño de Fármacos , Proteínas de Unión al GTP/metabolismo , Humanos , Ligandos , Péptidos/química , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Relación Estructura-Actividad , Transglutaminasas/metabolismo
10.
Enzyme Microb Technol ; 135: 109489, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32146932

RESUMEN

The successful enzymatic synthesis of various ganglioside-related oligosaccharides requires many available glycan-processing enzymes. However, the number of available glycan-processing enzymes remains limited. In this study, the full-length CgtA43456 (ß-(1→4)-N-acetylgalactosaminyltransferase) and CgtB11168 (ß-(1→3)-galactosyltransferase) were successfully produced from Escherichia coli through the optimization of E. coli-preferable codon usage, selection of E. coli strain, and use of the molecular chaperone GroEL-GroES (GroEL/ES). The CgtA43456 enzyme was produced as a soluble form in E. coli C41(DE3) co-expressed with codon-optimized CgtA43456 and GroEL/ES. However, soluble CgtB11168 was well expressed in E. coli C41(DE3) with only the codon-optimized CgtB11168. Rather, when co-expressed with GroEL/ES, total production of CgtB11168 was reduced. Using immobilized-metal affinity chromatography, the CgtA43456 and CgtB11168 proteins were obtained with approximately 75-78 % purity. The purified CgtA43456 showed a specific activity of 21 mU/mg using UDP-N-acetylgalactosamine and GM3 trisaccharide as donor and acceptor, respectively. The purified CgtB11168 catalyzed the transfer of galactose from UDP-Gal to GM2 tetrasaccharide with a specific activity of 16 mU/mg. We propose that they could be used as catalysts for enzymatic synthesis of GM1 ganglioside-related oligosaccharides.


Asunto(s)
Proteínas Bacterianas/genética , Campylobacter jejuni/enzimología , Galactosiltransferasas/genética , Galactosiltransferasas/aislamiento & purificación , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/química , Campylobacter jejuni/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosiltransferasas/química , Galactosiltransferasas/metabolismo , Expresión Génica , N-Acetilgalactosaminiltransferasas/química , N-Acetilgalactosaminiltransferasas/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Especificidad por Sustrato
11.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991788

RESUMEN

Transglutaminase 2 (TG2) is a Ca2+-dependent enzyme, which regulates various cellular processes by catalyzing protein crosslinking or polyamination. Intracellular TG2 is activated and inhibited by Ca2+ and GTP binding, respectively. Although aberrant TG2 activation has been implicated in the pathogenesis of diverse diseases, including cancer and degenerative and fibrotic diseases, the structural basis for the regulation of TG2 by Ca2+ and GTP binding is not fully understood. Here, we produced and analyzed a Ca2+-containing TG2 crystal, and identified two glutamate residues, E437 and E539, as Ca2+-binding sites. The enzymatic analysis of the mutants revealed that Ca2+ binding to these sites is required for the transamidase activity of TG2. Interestingly, we found that magnesium (Mg2+) competitively binds to the E437 and E539 residues. The Mg2+ binding to these allosteric sites enhances the GTP binding/hydrolysis activity but inhibits transamidase activity. Furthermore, HEK293 cells transfected with mutant TG2 exhibited higher transamidase activity than cells with wild-type TG2. Cells with wild-type TG2 showed an increase in transamidase activity under Mg2+-depleted conditions, whereas cells with mutant TG2 were unaffected. These results indicate that E437 and E539 are Ca2+-binding sites contributing to the reciprocal regulation of transamidase and GTP binding/hydrolysis activities of TG2 through competitive Mg2+ binding.


Asunto(s)
Aminoaciltransferasas/metabolismo , Sitios de Unión , Calcio/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Magnesio/metabolismo , Transglutaminasas/metabolismo , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Unión Competitiva , Calcio/química , Activación Enzimática , Proteínas de Unión al GTP/química , Guanosina Trifosfato/química , Humanos , Hidrólisis , Magnesio/química , Modelos Biológicos , Conformación Molecular , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Relación Estructura-Actividad , Transglutaminasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...