Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 657: 229-239, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38039883

RESUMEN

Electrolysis in seawater is a low-cost but difficult method of producing hydrogen. Herein, self-assembled hierarchical three-dimensional (3D) porous trimetallic palladium-iron and cobalt oxide anchored on a cheap and high surface area nickel foam (NF) (PdFeCo3-xO4/NF) were synthesized using a simple and low-cost impregnation-hydrothermal and thermal reduction strategy. The as-fabricated PdFeCo3-xO4/NF electrode showed both superhydrophilic and superaerophobic properties, which favored the fat removal of oxygen bubbles from the electrode surface owing to the close interaction between the electrode and electrolyte. Furthermore, the significant synergistic effect of trimetallics and the NF-matrix resulted in substantially enhanced oxygen evolution reaction (OER) intrinsic activity. The self-assembled PdFeCo3-xO4/NF catalyst exhibited critical low overpotentials of 300 and 340 mV to achieve an extremely large current density of 100 mA cm-2 in 1 M KOH solution and 1 M KOH seawater. Cell voltages as low as 1.44 and 1.51 V were required to drive 10 mA cm-2 in alkaline solution and seawater electrolytes for the full cell overall water splitting performance. This work suggests a promising strategy for developing next-generation electrocatalysts appropriate for natural seawater with cost-effective.

2.
Biosensors (Basel) ; 13(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37998142

RESUMEN

L-tryptophan (L-TRP) is an essential amino acid responsible for the establishment and maintenance of a positive nitrogen equilibrium in the nutrition of human beings. Therefore, it is vital to quantify the amount of L-tryptophan in our body. Herein, we report the MoS2/S@g-CN-modified glassy carbon electrode for the electrochemical detection of L-tryptophan (L-TRP). The MoS2/S@g-CN composite was successfully synthesized using an efficient and cost-effective hydrothermal method. The physical and chemical properties of the synthesized composite were analyzed using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray analysis (EDX). The crystallite size of the composite was calculated as 39.4 nm, with porous balls of MoS2 decorated over the S@g-CN surface. The XPS spectrum confirmed the presence of Mo, S, O, C, and N elements in the sample. The synthesized nanocomposite was further used to modify the glassy carbon (GC) electrode (MoS2/S@g-CN/GC). This MoS2/S@g-CN/GC was used for the electrochemical detection of L-TRP using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. For the purpose of comparison, the effects of the scanning rate and the concentration of L-TRP on the current response for the bare GC, S@g-CN/GC, MoS2/GC, and MoS2/S@g-CN/GC were studied in detail. The MoS2/S@g-CN-modified GC electrode exhibited a rational limit of detection (LoD) of 0.03 µM and a sensitivity of 1.74 µA/ µMcm2, with excellent stability, efficient repeatability, and high selectivity for L-TRP detection.


Asunto(s)
Grafito , Humanos , Grafito/química , Triptófano/análisis , Molibdeno , Carbono/química , Electrodos , Técnicas Electroquímicas/métodos
3.
Micromachines (Basel) ; 14(10)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37893344

RESUMEN

Recently, two-dimensional (2D) MXenes materials have received enormous attention because of their excellent physiochemical properties such as high carrier mobility, metallic electrical conductivity, mechanical properties, transparency, and tunable work function. MXenes play a significant role as additives, charge transfer layers, and conductive electrodes for optoelectronic applications. Particularly, titanium carbide (Ti3C2Tx) MXene demonstrates excellent optoelectronic features, tunable work function, good electron affinity, and high conductivity. The Ti3C2Tx has been widely used as electron transport (ETL) or hole transport layers (HTL) in the development of perovskite solar cells (PSCs). Additionally, Ti3C2Tx has excellent electrochemical properties and has been widely explored as sensing material for the development of electrochemical biosensors. In this review article, we have summarized the recent advances in the development of the PSCs using Ti3C2Tx MXene as ETL and HTL. We have also compiled the recent progress in the fabrication of biosensors using Ti3C2Tx-based electrode materials. We believed that the present mini review article would be useful to provide a deep understanding, and comprehensive insight into the research status.

4.
Environ Res ; 231(Pt 3): 116288, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263474

RESUMEN

The removal of dyes from wastewater by photocatalytic technologies has received substantial attention in recent years. In the present study, novel Z-scheme V2O5/g-C3N4 photocatalytic composites were organized via simple hydrothermal processes and a sequence of several characterization aspects. The degradation results showed that the optimum Z-scheme GVO2 heterostructure composite photocatalysts (PCs) had a better efficiency (90.1%) and an apparent rate (0.0136 min-1) for the methylene blue (MB) aqueous organic dye degradation, which was about 6.18-fold higher than that of pristine GCN catalyst. Meanwhile, the GVO2 heterostructured PCs showed better recycling stability after five consecutive tests. Moreover, the free radical trapping tests established that •O2- and h+ species were the prime reactive species in the photocatalytic MB degradation process in the heterostructured PCs. The photocatalytic enhanced activity was primarily recognized as the synergistic interfacial construction of the Z-scheme heterojunctions among V2O5 and GCN, which improved the separation/transfer, lower recombination rate, extended visible-light utilization ability, and enhanced reaction rate. Therefore, the existing study affords a simple tactic for the development of a direct Z-scheme for photocatalytic heterojunction nanomaterials for potential environmental remediation applications.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Colorantes , Azul de Metileno
5.
Environ Res ; 232: 116319, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37271436

RESUMEN

This current study aims to develop a unique biomaterial that can fight against oxidative stress and microbial infections without causing any harm. As a result, an easy-to-make, environment-friendly, long-lasting, and non-toxic copper oxide nanoparticle (CuONP) was synthesized using an edible mushroom Pleurotus citrinopileatus extract. The UV-vis spectroscopy analyses reflected a sharp absorbance peak at 250 nm. The FTIR, XRD, SEM, HR-TEM, and EDX instrumental tools were used to characterize the myco-produced CuONPs. The face-centred cubic (FCC) CuONPs were found to have diffraction peaks at the planes of (110), (002), (111), (112), (020), (202), (113), (310), (220), and (004). The HR-TEM result showed the particles had a spherical structure and an average nanoparticles size of 20 nm. The antimicrobial activity results expressed the broad spectrum of antibacterial effect and the better growth inhibition zone was recorded in P. aeruginosa (8.3 ± 0.1), E. coli (7.4 ± 0.3), K. pneumoniae (7.2 ± 0.1), S. aureus (7.1 ± 0.3), S. pneumoniae (6.3 ± 0.2), and B. cereus (6.2 ± 0.3 mm). The cytotoxicity efficacy of myco-synthesized CuONPs tested against a cancer cell line (HT-29) observed the best result in low doses of mushroom extract (45.62 µg/mL). Based on the outcome of the study suggests that the mycosynthesized CuONPs using Pleurotus mushroom extract might serve as an alternative agent for biomedical applications in the near future.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Pleurotus , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Staphylococcus aureus , Escherichia coli , Cobre/química , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Óxidos , Espectroscopía Infrarroja por Transformada de Fourier
6.
Chemistry ; 29(35): e202300513, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37029556

RESUMEN

In the past few years, there has been a significant increase in the development and production of perovskite or perovskite-like materials that do not contain lead (Pb) for the purpose of constructing solar cells. The development and testing of lead-free perovskite-like structures for solar cells is crucial. In this study, we used the solar cell capacitance software (SCAPS) to simulate perovskite solar cells based on methyl ammonium bismuth iodide (MA3 Bi2 I9 ). The electron-transport layer, hole-transport layer, and absorber layer thickness were optimized using SCAPS. The simulated perovskite solar cells (FTO/TiO2 /MA3 Bi2 I9 /spiro-OMeTAD/Au) performed well with a power conversion efficiency of 14.07 % and a reasonable open circuit voltage of 1.34 V, using the optimized conditions determined by SCAPS. Additionally, we conducted experiments to fabricate perovskite solar cells under controlled humidity, which showed a power conversion efficiency of 1.31 %.


Asunto(s)
Programas Informáticos , Simulación por Computador
7.
Mikrochim Acta ; 190(5): 197, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120457

RESUMEN

A highly sensitive 4-cyanophenol (4-CP) sensor was fabricated using multi-walled carbon nanotube (MWCNT)-embedded dual-microporous polypyrrole nanoparticle-modified screen-printed carbon electrodes (SPCE/DMPPy/MWCNT). The well-defined dual pores of DMPPy and MWCNT (~ 0.53 and ~ 0.65 nm) acted as good analyte absorption agents (shortening the ion diffusion path) and conducting agents (reducing the internal electron-transfer resistance). This enhanced electrical conductivity resulted in the improved electro-oxidation of 4-CP. A higher sensitivity (19.0 µA µM-1 cm-2) and lower limit of detection (0.8 nM) were achieved with a wide detection range of 0.001-400 µM (R2 = 0.9988). The proposed sensor exhibited excellent recovery of 4-CP in real-world samples. Therefore, the SPCE/DMPPy/MWCNT sensor is regarded highly suitable for rapidly detecting 4-CP.

8.
Chemistry ; 29(27): e202300250, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-36958938

RESUMEN

In this study, a highly air stable and eco-friendly methyl ammonium bismuth iodide (MA3 Bi2 I9 ) perovskite-like material has been prepared. After physiochemical characterizations, the synthesized MA3 Bi2 I9 was utilized as photo-catalyst towards hydrogen production. It is important to design and synthesize lead (Pb)-free perovskite-like material (MA3 Bi2 I9 ) for photo-catalytic hydrogen-production applications. The synthesized MA3 Bi2 I9 exhibits excellent photo-catalytic hydrogen generation with a production rate of 11.43 µmolg-1 h-1 . In the presence of a platinum co-catalyst, the hydrogen production rate further increases to 172.44 µmolg-1 h-1 . The MA3 Bi2 I9 photo-catalyst also demonstrates excellent cyclic stability.

9.
Biosensors (Basel) ; 13(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36831961

RESUMEN

Electrochromic technologies that exhibit low power consumption have been spotlighted recently. In particular, with the recent increase in demand for paper-like panel displays, faster coloration time has been focused on in researching electrochromic devices. Tungsten trioxide (WO3) has been widely used as an electrochromic material that exhibits excellent electrochromic performance with high thermal and mechanical stability. However, in a solid film-type WO3 layer, the coloration time was long due to its limited surface area and long diffusion paths of lithium ions (Li-ions). In this study, we attempted to fabricate a fibrous structure of WO3@poly(ethylene oxide) (PEO) composites through electrospinning. The fibrous and porous layer showed a faster coloration time due to a short Li-ion diffusion path. Additionally, PEO in fibers supports Li-ions being quickly transported into the WO3 particles through their high ionic conductivity. The optimized WO3@PEO fibrous structure showed 61.3 cm2/C of high coloration efficiency, 1.6s fast coloration time, and good cycle stability. Lastly, the electrochromic device was successfully fabricated on fabric using gel electrolytes and a conductive knitted fabric as a substrate and showed a comparable color change through a voltage change from -2.5 V to 1.5 V.


Asunto(s)
Dispositivos Electrónicos Vestibles , Transporte Biológico , Difusión , Conductividad Eléctrica , Electrodos , Litio
10.
Adv Sci (Weinh) ; 10(12): e2206355, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36814343

RESUMEN

In searching for unique and unexplored 2D materials, the authors try to investigate for the very first time the use of delaminated V-MXene coupled with precious metal ruthenium (Ru) through atomic layer deposition (ALD) for various contact and noncontact mode of real-time temperature sensing applications at the human-machine interface. The novel delaminated V-MXene (DM-V2 CTx ) engineered ruthenium-ALD (Ru-ALD) temperature sensor demonstrates a competitive sensing performance of 1.11% °C-1 as of only V-MXene of 0.42% °C-1 . A nearly threefold increase in sensing and reversibility performance linked to the highly ordered few-layered V-MXene and selective, well-controlled Ru atomic doping by ALD for the successful formation of Ru@DM-V2 CTX heterostructure. The advanced heterostructure formation, the mechanism, and the role of Ru have been comprehensively investigated by ultra-high-resolution transmission/scanning transmission electron microscopies coupled with next-generation spherical aberration correction technology and fast, accurate elemental mapping quantifications, also by ultraviolet photoelectron spectroscopy. To the knowledge, this work is the first to use the novel, optimally processed V-MXene over conventionally used Ti-MXene and its surface-internal structure engineering by Ru-ALD process-based temperature-sensing devices function and operational demonstrations. The current work could potentially motivate the development of multifunctional, future, next-generation, safe, personal healthcare electronic devices by the industrially scalable ALD technique.


Asunto(s)
Rutenio , Humanos , Electrónica , Ingeniería , Sensación Térmica
11.
Chemosphere ; 311(Pt 1): 136928, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36272623

RESUMEN

The use of dyes and segments has increased widely in recent years, but it poses a serious health risk to ecosystems. In this work, TiO2 and two-dimensional g-C3N4 nanosheets (g-CN) were fabricated through co-precipitation and thermal polymerization technique, respectively. The g-CN-TiO2 photocatalyst (1: 3, 2: 2, 3: 1) in various weight percentages was prepared using a simple impregnation process. The photocatalytic behaviour of the g-CN, TiO2 NPs, and different weight percentages of g-CN-TiO2 photocatalyst was evaluated against methylene blue (MB) dye under UV-visible light illumination. Compared to pristine and other weight percentages of the g-CN-TiO2 nanocomposite, the optimized g-CN-TiO2 nanocomposite (3:1) showed promoted performance against MB dye. The enriched catalytic efficiency can be accredited to the low amount of TiO2 nanoparticles deposited on gCN nanosheets, possibly due to the boosted transport properties of the electron-hole pairs. The enriched photocatalytic behaviour can be attributed to the development of the Z-scheme system between TiO2 and g-CN. The current study is an outstanding demonstration of the development of maximum catalytic efficiency for destroying hazardous chemical dyes.


Asunto(s)
Colorantes , Contaminantes Ambientales , Colorantes/química , Ecosistema , Titanio/química , Azul de Metileno/química
12.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234533

RESUMEN

Recently, the design and fabrication of lead (Pb)-free perovskite or perovskite-like materials have received great interest for the development of perovskite solar cells (PSCs). Manganese (Mn) is a less toxic element, which may be an alternative to Pb. In this work, we explored the role of NH3(CH2)2NH3MnCl4 perovskite as a light absorber layer via SCAPS-1D. A Pb-free PSC device (FTO/TiO2/NH3(CH2)2NH3MnCl4/spiro-OMeTAD/Au) was simulated via SCAPS-1D software. The simulated Pb-free PSCs (FTO/TiO2/NH3(CH2)2NH3MnCl4/spiro-OMeTAD/Au) showed decent power conversion efficiency (PCE) of 20.19%. Further, the impact of the thickness of absorber (NH3(CH2)2NH3MnCl4), electron transport (TiO2), and hole-transport (spiro-OMeTAD) layers were also investigated. Subsequently, various electron transport layers (ETLs) were also introduced to investigate the role of ETL. In further studies, an NH3(CH2)2NH3MnCl4-based PSC device (FTO/TiO2/NH3(CH2)2NH3MnCl4/spiro-OMeTAD/Au) was also developed (humidity = ~30-40%). The fabricated PSCs displayed an open circuit voltage (Voc) of 510 mV with a PCE of 0.12%.

13.
Biosensors (Basel) ; 12(10)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36290983

RESUMEN

Hydroquinone is a widely used derivative of phenol which has a negative influence on human beings and the environment. The determination of the accurate amount of hydroquinone is of great importance. Recently, the fabrication of an electrochemical sensing device has received enormous attention. In this study, we reported on the facile synthesis of cerium dioxide (CeO2) nanoparticles (NPs). The CeO2 NPs were synthesized using cerium nitrate hexahydrate as a precursor. For determining the physicochemical properties of synthesized CeO2 NPs, various advanced techniques, viz., powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS), were studied. Further, these synthesized CeO2 NPs were used for the modification of a glassy carbon electrode (CeO2/GCE), which was utilized for the sensing of hydroquinone (HQ). A decent detection limit of 0.9 µM with a sensitivity of 0.41 µA/µM cm2 was exhibited by the modified electrode (CeO2/GCE). The CeO2/GCE also exhibited good stability, selectivity, and repeatability towards the determination of HQ.


Asunto(s)
Carbono , Hidroquinonas , Humanos , Polvos , Electrodos , Carbono/química , Fenoles , Técnicas Electroquímicas
14.
Biosensors (Basel) ; 12(10)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36290986

RESUMEN

Serotonin is a very important monoamine neurotransmitter, which takes part in biological and psychological processes. In the present scenario, design and fabrication of a serotonin electrochemical sensor is of great significance. In this study, we have synthesized α-MnO2 via a hydrothermal synthesis method using potassium permanganate as a precursor. The physiochemical properties, such as structural and phase-purity of the prepared α-MnO2, were investigated by various characterization techniques and methods (powder X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy). Furthermore, the serotonin sensor was fabricated using α-MnO2 as an electrode modifier or electro-catalyst. The bare glassy carbon electrode (GCE) was adopted as a working substrate, and its active carbon surface was modified with the synthesized α-MnO2. This modified GCE (α-MnO2/GCE = MGCE) was explored as a serotonin sensor. The electrochemical investigations showed that the MGCE has excellent electro-catalytic properties towards determination of serotonin. The MGCE exhibits an excellent detection limit (DL) of 0.14 µM, along with good sensitivity of 2.41 µAµM-1 cm-2. The MGCE also demonstrated excellent selectivity for determination of serotonin in the presence of various electro-active/interfering molecules. The MGCE also exhibits good cyclic repeatability, stability, and storage stability.


Asunto(s)
Carbono , Nanotubos , Carbono/química , Compuestos de Manganeso/química , Serotonina , Técnicas Electroquímicas/métodos , Óxidos/química , Permanganato de Potasio , Polvos , Electrodos
15.
Nanomaterials (Basel) ; 12(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35889667

RESUMEN

In recent years, the electrochemical sensing approach has attracted electrochemists because of its excellent detection process, simplicity, high sensitivity, cost-effectiveness, and high selectivity. In this study, we prepared nitrogen doped reduced graphene oxide (N-rGO) and characterized it using various advanced techniques such as XRD, SEM, EDX, Raman, and XPS. Furthermore, we modified the active surface of a screen printed carbon electrode (SPCE) via the drop-casting of N-rGO. This modified electrode (N-rGO/SPCE) exhibited an excellent detection limit (LOD) of 0.83 µM with a decent sensitivity of 4.34 µAµM-1cm-2 for the detection of hydrogen peroxide (H2O2). In addition, N-rGO/SPCE also showed excellent selectivity, repeatability, and stability for the sensing of H2O2. Real sample investigations were also carried out that showed decent recovery.

16.
Nanotechnology ; 32(49)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399410

RESUMEN

Hydrogen has been considered as one of the most promising alternative energy source to solve the future energy demands due to its high energy capacity and emission-free character. The generation of hydrogen from non-fossil sources is necessary for the sustainable development of human life on this planet. The hydrolysis of sodium borohydride can quickly produce a large amount of hydrogenin situand on-demand in the presence of the catalyst, which can be used as an alternative energy source. So, it is crucial to fabricate the highly efficient, robust, and economical catalyst for the production of hydrogen via hydrolysis of sodium borohydride. Herein, a facile and efficient approach for the synthesis of metal-functionalized reduced graphene oxide for the production of hydrogen at room temperature was used. Moreover, the synthesized catalyst has also been tested in the field of environmental catalysis for the reduction of toxic 4-nitrophenol to valuable 4-aminophenol in the presence of sodium borohydride. The enhanced activity of prepared metal-functionalized reduced graphene oxide is ascribed to a strong affinity between Fe-NXand reduced graphene oxide which facilitates electron transfer as well as synergistic effect. Overall, this work presents a crucial procedure for green chemistry reactions when a carbonaceous material is selected as a catalyst.

17.
Mikrochim Acta ; 188(7): 233, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145512

RESUMEN

Well-defined crystal structures of Pd-doped WO3 nanorods were assembled on graphitic carbon sheets (Pd-WO3/g-C3N4) for ultrasensitive detection of paraoxon-ethyl (PEL) using an electrochemical method. The electrochemical behavior of PEL on the Pd-WO3/g-C3N4 hybrid composite was investigated using cyclic voltammetry (CV) and amperometric techniques. The Pd-WO3 crystallite was seen to modify the kinetics of g-C3N4, which improved the reduction/redox peak currents of PEL at the Pd-WO3/g-C3N4 composite compared to those of the g-C3N4 and WO3/g-C3N4-modified electrode. Moreover, the π-π interaction and hydrogen bond between the PEL and Pd-WO3/g-C3N4 composite improved the charge-transfer properties. The Pd-WO3/g-C3N4 hybrid composite was therefore able to obtain an enhanced sensitivity (3.70 ± 0.05 µA µM-1 cm-2) and low detection limit (0.03 nM; S/N = 3) with a wide range of linear concentrations (0.01-60 and 80-900.0 ± 5 µM) at applied potential of - 0.63 V (vs. Ag/AgCl). The detection of PEL in agricultural water and soil samples was successfully demonstrated with satisfactory RSD of 2.5 to 3.1% and recovery results of 97 to 102%, respectively.

18.
Mikrochim Acta ; 188(4): 135, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33759064

RESUMEN

We prepared, for the first time, carbon aerogels support on Pd-WO3 nanorods (CAs/Pd-WO3) hybrid nanocomposite via sol-gel and microwave-assisted methods. The as-prepared CAs/Pd-WO3-modified electrode was used as effective electrocatalyst for nanomolar level detection of mesalazine (MSA). The typical porous nature of carbon aerogels effectively prevented the aggregation of Pd-doped WO3 nanorods and increased the electrochemically active surface area. In addition, the Pd-WO3 nanointerface provides intrinsic improvement of the electrocatalytic activity and stability for the electrochemical oxidation process, and the interconnected conducting network of the porous surfaces of CAs accelerated rapid electron transport at the working electrode. The synergistic effect of the CAs/Pd-WO3 architecture has excellent electrocatalytic activity for the detection of MSA with high sensitivity of 2.403 ± 0.004 µA µM-1 cm-2, low detection limit of 0.8 ± 0.3 nM and wide linear response from 0.003-350 µM at a low applied potential of 0.30 V vs. Ag|AgCl. Satisfactory results were observed for its analytical performance in detecting MSA in human blood serum and urine samples, and recoveries ranged from 98.8 to 100.4%. We believe that the architecture of the modified CAs/Pd-WO3 electrocatalysts can be effectively used in clinical applications for the detection of MSA.

19.
Chemosphere ; 263: 128185, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297152

RESUMEN

With the rapid rate of industrialization, the emission of effluents represents a serious threat to aquatic living organisms and the environment. Semiconductor-mediated photocatalysis has been highlighted as the most attractive technology for the elimination of pollutants. In this connection, bandgap-tuned ultra-small SnO2-nanoparticle-decorated 2D-Bi2WO6 nanoplates were prepared via the hydrothermal method. The tuning of the bandgap was altered by the thermal annealing procedure. Moreover, we investigated the influence of different bandgaps of SnO2 on the anchoring of the 2D-Bi2WO6 nanoplates and studied their photocatalytic activity through the degradation of Rhodamine B under visible light irradiation. The ultra-small SnO2 nanoparticles were highly anchored on the surface of the 2D-Bi2WO6 plates, which resulted in more photon harvesting, improved charge separation, the transfer of photoinduced charge carriers, and the alteration of band positions towards the visible region of light. Furthermore, the anchored SnO2 nanoparticles improved the performance of the photocatalytic activity of 2D-Bi2WO6 nanoplates by more than 2.7 times.


Asunto(s)
Contaminantes Ambientales , Nanopartículas , Catálisis , Luz , Semiconductores
20.
Colloids Surf B Biointerfaces ; 192: 111026, 2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32344163

RESUMEN

A novel ultrasonically driven bio-reduction method was adopted to reduce the palladium chloride into palladium nanoparticles (PdNPs@CA) using coleus amboinicus extract as a green synthetic protocol. XRD confirms the formation of phase pure cubic Pd nanoparticles with the crystallite size range of 40-50 nm. The UV-vis spectrum reveals the formation of Pd nanoparticles by the disappeared peak at 480 nm of PdCl2 solution. The size distribution and surface morphology of prepared Pd nanoparticles showed spherical shaped nanoparticles with less agglomeration. The catalytic reduction behaviour of the Pd suspension is studied by 4-nitro phenol reduction process in 8 min further confirms its high catalytic performance. Synthesized PdNPs@CA were explored in ultrasound promoted Suzuki-Miyaura coupling reaction to determine the catalytic behaviour with ultrasonic frequency of 40 kHz and power of 150 W (Power sonic 410 bath sonicator) and its recycling ability is determined. It was found that aryl halides reacted with aryl boronic acids to obtain biaryl compound with excellent reaction yields in the presence of PdNPs@CA only in 30 min using PEG-400 as a green solvent. PdNPs@CA can be recovered efficiently and reused for 7 cycles without loss of its catalytic property.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...