Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 1927, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317636

RESUMEN

Because old age is associated with defects in circadian rhythm, loss of circadian regulation is thought to be pathogenic and contribute to mortality. We show instead that loss of specific circadian clock components Period (Per) and Timeless (Tim) in male Drosophila significantly extends lifespan. This lifespan extension is not mediated by canonical diet-restriction longevity pathways but is due to altered cellular respiration via increased mitochondrial uncoupling. Lifespan extension of per mutants depends on mitochondrial uncoupling in the intestine. Moreover, upregulated uncoupling protein UCP4C in intestinal stem cells and enteroblasts is sufficient to extend lifespan and preserve proliferative homeostasis in the gut with age. Consistent with inducing a metabolic state that prevents overproliferation, mitochondrial uncoupling drugs also extend lifespan and inhibit intestinal stem cell overproliferation due to aging or even tumorigenesis. These results demonstrate that circadian-regulated intestinal mitochondrial uncoupling controls longevity in Drosophila and suggest a new potential anti-aging therapeutic target.


Asunto(s)
Ritmo Circadiano , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Circadianas Period/metabolismo , Animales , Sistemas CRISPR-Cas , Carcinogénesis , Proliferación Celular , Relojes Circadianos , Homeostasis , Intestinos/patología , Longevidad , Masculino , Potencial de la Membrana Mitocondrial , Mutación , Estrés Oxidativo/fisiología , Consumo de Oxígeno , Proteína Desacopladora 1/metabolismo
2.
Elife ; 82019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31613218

RESUMEN

In Drosophila, ~150 neurons expressing molecular clock proteins regulate circadian behavior. Sixteen of these neurons secrete the neuropeptide Pdf and have been called 'master pacemakers' because they are essential for circadian rhythms. A subset of Pdf+ neurons (the morning oscillator) regulates morning activity and communicates with other non-Pdf+ neurons, including a subset called the evening oscillator. It has been assumed that the molecular clock in Pdf+ neurons is required for these functions. To test this, we developed and validated Gal4-UAS based CRISPR tools for cell-specific disruption of key molecular clock components, period and timeless. While loss of the molecular clock in both the morning and evening oscillators eliminates circadian locomotor activity, the molecular clock in either oscillator alone is sufficient to rescue circadian locomotor activity in the absence of the other. This suggests that clock neurons do not act in a hierarchy but as a distributed network to regulate circadian activity.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neuronas/metabolismo , Neuropéptidos/genética , Proteínas Circadianas Period/genética , Animales , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Sistemas CRISPR-Cas , Comunicación Celular , Linaje de la Célula/genética , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Oscuridad , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efectos de la radiación , Retroalimentación Fisiológica , Edición Génica , Regulación de la Expresión Génica , Fototransducción/genética , Locomoción/genética , Locomoción/efectos de la radiación , Red Nerviosa/metabolismo , Red Nerviosa/efectos de la radiación , Neuronas/citología , Neuronas/efectos de la radiación , Neuropéptidos/deficiencia , Proteínas Circadianas Period/deficiencia , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
3.
Elife ; 72018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30028292

RESUMEN

Cytokinesis, the physical division of one cell into two, is powered by constriction of an actomyosin contractile ring. It has long been assumed that all animal cells divide by a similar molecular mechanism, but growing evidence suggests that cytokinetic regulation in individual cell types has more variation than previously realized. In the four-cell Caenorhabditis elegans embryo, each blastomere has a distinct cell fate, specified by conserved pathways. Using fast-acting temperature-sensitive mutants and acute drug treatment, we identified cell-type-specific variation in the cytokinetic requirement for a robust forminCYK-1-dependent filamentous-actin (F-actin) cytoskeleton. In one cell (P2), this cytokinetic variation is cell-intrinsically regulated, whereas in another cell (EMS) this variation is cell-extrinsically regulated, dependent on both SrcSRC-1 signaling and direct contact with its neighbor cell, P2. Thus, both cell-intrinsic and -extrinsic mechanisms control cytokinetic variation in individual cell types and can protect against division failure when the contractile ring is weakened.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/fisiología , Linaje de la Célula , Citocinesis , Familia-src Quinasas/metabolismo , Animales , Caenorhabditis elegans/citología , Embrión no Mamífero/citología , Desarrollo Embrionario , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...