Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792053

RESUMEN

Sulfite, a widely used food additive, is subject to regulated labeling. The extraction of sulfite as the stable hydroxymethylsulfonate (HMS) form and its quantitative analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been recognized for their good sensitivity, selectivity, and versatility across various food materials. This study aimed to develop a cost-effective and simpler method for sulfite quantitation, while maintaining the superior sensitivity and selectivity of mass spectrometry (MS). To achieve this, we introduced paper spray ionization (PSI), an ambient desorption ionization technique that could achieve the direct measurement of analytes without employing separation. We also employed a novel internal standard (IS) structurally similar to the analyte, replacing the more expensive isotopically labeled IS. Although the PSI-MS/MS method developed in this study exhibited slightly lower analytical performance compared to the conventional LC-MS/MS, it remained effective for sulfite analysis in dried fruits.


Asunto(s)
Frutas , Sulfitos , Espectrometría de Masas en Tándem , Sulfitos/análisis , Sulfitos/química , Espectrometría de Masas en Tándem/métodos , Frutas/química , Cromatografía Liquida/métodos , Papel , Análisis de los Alimentos/métodos
2.
Genes Genomics ; 46(4): 499-510, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38453815

RESUMEN

BACKGROUND: The skin microbiome is essential in guarding against harmful pathogens and responding to environmental changes by generating substances useful in the cosmetic and pharmaceutical industries. Among these microorganisms, Streptococcus is a bacterial species identified in various isolation sources. In 2021, a strain of Streptococcus infantis, CX-4, was identified from facial skin and found to be linked to skin structure and elasticity. As the skin-derived strain differs from other S. infantis strains, which are usually of oral origin, it emphasizes the significance of bacterial variation by the environment. OBJECTIVE: This study aims to explore the unique characteristics of the CX-4 compared to seven oral-derived Streptococcus strains based on the Whole-Genome Sequencing data, focusing on its potential role in skin health and its possible application in cosmetic strategies. METHODS: The genome of the CX-4 strain was constructed using PacBio Sequencing, with the assembly performed using the SMRT protocol. Comparative whole-genome analysis was then performed with seven closely related strains, utilizing web-based tools like PATRIC, OrthoVenn3, and EggNOG-mapper, for various analyses, including protein association analysis using STRING. RESULTS: Our analysis unveiled a substantial number of Clusters of Orthologous Groups in diverse functional categories in CX-4, among which sphingosine kinase (SphK) emerged as a unique product, exclusively present in the CX-4 strain. SphK is a critical enzyme in the sphingolipid metabolic pathway, generating sphingosine-1-phosphate. The study also brought potential associations with isoprene formation and retinoic acid synthesis, the latter being a metabolite of vitamin A, renowned for its crucial function in promoting skin cell growth, differentiation, and maintaining of skin barrier integrity. These findings collectively suggest the potential of the CX-4 strain in enhancing of skin barrier functionality. CONCLUSION: Our research underscores the potential of the skin-derived S. infantis CX-4 strain by revealing unique bacterial compounds and their potential roles on human skin.


Asunto(s)
Genoma Bacteriano , Streptococcus , Humanos , Filogenia , Streptococcus/genética , Secuenciación Completa del Genoma
3.
Antonie Van Leeuwenhoek ; 116(11): 1139-1150, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37658955

RESUMEN

A non-motile, novel actinobacterial strain, Kera-3T, which is a gram-positive, aerobic, rod-shaped bacterium, was isolated from human keratinocytes on 1/10 diluted R2A agar. Whole-cell hydrolysis of amino acids revealed the presence of meso-DAP, alanine, and glutamic acid. The predominant menaquinone was MK-9 (H8), whereas the primary fatty acids were C16:0 and C18:1 ω9c. The major phospholipids included diphosphatidylglycerol and aminophospholipids, along with an unidentified phosphoglycolipid and an aminophosphoglycolipid. The G+C content of the genomic DNA was 73.2%, based on the complete genome sequence. Phylogenetic analyses of the 16S rRNA gene sequence and phylogenomic analysis of 91 core genes showed that strain Kera-3T formed a new lineage in the family Iamiaceae, with the closest neighbour Rhabdothermincola sediminis SYSU G02662T having 91.19% 16S rRNA gene sequence identity. A comparative genomic study of the predicted general metabolism and carbohydrate-active enzymes supported the phylogenetic and phylogenomic data. Based on the analysis of physiological, biochemical, and genomic characteristics, strain Kera-3T can be distinguished from known genera in the family Iamiaceae and represents a novel genus and species. Therefore, the name Dermatobacter hominis gen. nov., sp. nov. was proposed, with the type strain Kera-3T (= KACC 22415T = LMG 32493T).

4.
J Cachexia Sarcopenia Muscle ; 14(5): 2239-2252, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37559423

RESUMEN

BACKGROUND: The functional deterioration and loss of motor neurons are tightly associated with degenerative motor neuron diseases and aging-related muscle wasting. Motor neuron diseases or aging-related muscle wasting in turn contribute to increased risk of adverse health outcomes in the elderly. Cdon (cell adhesion molecule-downregulated oncogene) belongs to the immunoglobulin superfamily of cell adhesion molecule and plays essential roles in multiple signalling pathways, including sonic hedgehog (Shh), netrin, and cadherin-mediated signalling. Cdon as a Shh coreceptor plays a critical role in motor neuron specification during embryonic development. However, its role in adult motor neuron function is unknown. METHODS: Hb9-Cre recombinase-driven motor neuron-specific Cdon deficient mice (mnKO) and a compound mutant mice (mnKO::SOD1G93A ) were generated to investigate the role of Cdon in motor neuron degeneration. Motor neuron regeneration was examined by using a sciatic nerve crush injury model. To investigate the phenotype, physical activity, compound muscle action potential, immunostaining, and transmission electron microscopy were carried out. In the mechanism study, RNA sequencing and RNA/protein analyses were employed. RESULTS: Mice lacking Cdon in motor neurons exhibited middle age onset lethality and aging-related decline in motor function. In the sciatic nerve crush injury model, mnKO mice exhibited an impairment in motor function recovery evident by prolonged compound muscle action potential duration (4.63 ± 0.35 vs. 3.93 ± 0.22 s for f/f, P < 0.01) and physical activity. Consistently, neuromuscular junctions of mnKO muscles were incompletely occupied (49.79 ± 5.74 vs. 79.39 ± 3.77% fully occupied neuromuscular junctions for f/f, P < 0.0001), suggesting an impaired reinnervation. The transmission electron microscopy analysis revealed that mnKO sciatic nerves had smaller axon diameter (0.88 ± 0.13 vs. 1.43 ± 0.48 µm for f/f, P < 0.0001) and myelination defects. RNA sequencing of mnKO lumbar spinal cords showed alteration in genes related to neurogenesis, inflammation and cell death. Among the altered genes, ErbB4 and FgfR expressions were significantly altered in mnKO as well as in Cdon-depleted NSC34 motor neuron cells. Consistently, Cdon-depleted NSC34 cells exhibited elevated levels of cleaved Caspase3 and γH2AX proteins, as well as Bax transcription. Cdon-depleted NSC34 cells also exhibited impaired activation of Akt in response to neuregulin-1 (NRG1) treatment. CONCLUSIONS: Our current data demonstrate the functional importance of Cdon in motor neuron function and nerve repair. Cdon ablation causes alterations in neurotrophin signalling that leads to motor neuron degeneration.

5.
Sci Transl Med ; 15(711): eabh3489, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647389

RESUMEN

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis. Reduced PGC-1α abundance is linked to skeletal muscle weakness in aging or pathological conditions, such as neurodegenerative diseases and diabetes; thus, elevating PGC-1α abundance might be a promising strategy to treat muscle aging. Here, we performed high-throughput screening and identified a natural compound, farnesol, as a potent inducer of PGC-1α. Farnesol administration enhanced oxidative muscle capacity and muscle strength, leading to metabolic rejuvenation in aged mice. Moreover, farnesol treatment accelerated the recovery of muscle injury associated with enhanced muscle stem cell function. The protein expression of Parkin-interacting substrate (PARIS/Zfp746), a transcriptional repressor of PGC-1α, was elevated in aged muscles, likely contributing to PGC-1α reduction. The beneficial effect of farnesol on aged muscle was mediated through enhanced PARIS farnesylation, thereby relieving PARIS-mediated PGC-1α suppression. Furthermore, short-term exercise increased PARIS farnesylation in the muscles of young and aged mice, whereas long-term exercise decreased PARIS expression in the muscles of aged mice, leading to the elevation of PGC-1α. Collectively, the current study demonstrated that the PARIS-PGC-1α pathway is linked to muscle aging and that farnesol treatment can restore muscle functionality in aged mice through increased farnesylation of PARIS.


Asunto(s)
Farnesol , Debilidad Muscular , Animales , Ratones , Farnesol/farmacología , Envejecimiento , Prenilación , Ubiquitina-Proteína Ligasas
6.
Plants (Basel) ; 12(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37446960

RESUMEN

Centella asiatica is a traditional herbaceous plant with numerous beneficial effects, widely known for its medicinal and cosmetic applications. Maximizing its growth can lead to beneficial effects, by focusing on the use of its active compounds. The use of plant growth-promoting rhizobacteria (PGPR) is known to be an alternative to chemical fertilizers. In this study, we used the PGPR Priestia megaterium HY-01 to increase the yield of C. asiatica. In vitro assays showed that HY-01 exhibited plant growth-promoting activities (IAA production, denitrification, phosphate solubilization, and urease activity). Genomic analyses also showed that the strain has plant growth-promoting-related genes that corroborate with the different PGP activities found in the assays. This strain was subsequently used in field experiments to test its effectiveness on the growth of C. asiatica. After four months of application, leaf and root samples were collected to measure the plant growth rate. Moreover, we checked the rhizosphere microbiome between the treated and non-treated plots. Our results suggest that treatment with Hyang-yak-01 not only improved the growth of C. asiatica (leaf length, leaf weight, leaf width, root length, root width, and chlorophyll content) but also influenced the rhizosphere microbiome. Biodiversity was higher in the treated group, and the bacterial composition was also different from the control group.

7.
Research (Wash D C) ; 6: 0158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342629

RESUMEN

Neuromuscular dysfunction is tightly associated with muscle wasting that occurs with age or due to degenerative diseases. However, the molecular mechanisms underlying neuromuscular dysfunction are currently unclear. Recent studies have proposed important roles of Protein arginine methyltransferase 1 (Prmt1) in muscle stem cell function and muscle maintenance. In the current study, we set out to determine the role of Prmt1 in neuromuscular function by generating mice with motor neuron-specific ablation of Prmt1 (mnKO) using Hb9-Cre. mnKO exhibited age-related motor neuron degeneration and neuromuscular dysfunction leading to premature muscle loss and lethality. Prmt1 deficiency also impaired motor function recovery and muscle reinnervation after sciatic nerve injury. The transcriptome analysis of aged mnKO lumbar spinal cords revealed alterations in genes related to inflammation, cell death, oxidative stress, and mitochondria. Consistently, mnKO lumbar spinal cords of sciatic nerve injury model or aged mice exhibited elevated cellular stress response in motor neurons. Furthermore, Prmt1 inhibition in motor neurons elicited mitochondrial dysfunction. Our findings demonstrate that Prmt1 ablation in motor neurons causes age-related motor neuron degeneration attributing to muscle loss. Thus, Prmt1 is a potential target for the prevention or intervention of sarcopenia and neuromuscular dysfunction related to aging.

8.
PLoS One ; 18(6): e0287523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37347743

RESUMEN

The woody Sonchus alliance, a spectacular example of adaptive radiation with six genera and approximately 31 species, is found exclusively on three Macaronesian Islands (Madeira, Canaries, and Cape Verdes) in the Atlantic Ocean. Four of the Sonchus taxa are restricted to Madeira, including shrubs and small trees at higher elevations (S. fruticosus and S. pinnatus), and caudex perennials in the lower coastal areas (S. ustulatus subsp. maderensis and S. ustulatus subsp. ustulatus). The Madeiran Sonchus stemmed from a single colonization event that originated from the Canaries < 3 million years ago. However, the plastome evolution and species relationships remains insufficiently explored. We therefore assembled and characterized the plastomes of four Sonchus taxa from Madeira and conducted a phylogenomic analysis. We found highly conserved plastome sequences among the taxa, further supporting a single and recent origin. We also found highly conserved plastomes among the cosmopolitan weedy Sonchus, Macaronesian Sonchus in the Atlantic, and Juan Fernández Islands Dendroseris in the Pacific. Furthermore, we identified four mutation hotspot regions (trnK-rps16, petN-psbM, ndhF-Ψycf1, and ycf1) and simple sequence repeat motifs. This study strongly supports the monophyly of Madeiran Sonchus. However, its relationship with the remaining woody Sonchus alliance from the Canary Islands requires further investigation.


Asunto(s)
Asteraceae , Sonchus , Filogenia , Sonchus/genética , Portugal , Madera
9.
Molecules ; 27(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014376

RESUMEN

The skin tissue of the scalp is unique from other skin tissues because it coexists with hair, and many differences in microbial composition have been confirmed. In scalp tissues, hair loss occurs due to a combination of internal and external factors, and several studies are being conducted to counteract this. However, not many studies have addressed hair loss from the perspective of the microbiome. In this study, subjects with hair loss and those with normal scalps were set as experimental and control groups, respectively. In the experimental group, hair loss had progressed, and there was a large difference in microbiome composition compared to the group with normal scalps. In particular, differences in Accumulibacter, Staphylococcus, and Corynebacterium were found. From Staphylococcus epidermidis Cicaria, two active components were isolated as a result of repeated column chromatography. Spectroscopic data led to the determination of chemical structures for adenosine and biotin. Fractions were obtained, and ex vivo tests were conducted using hair follicles derived from human scalp tissue. When the microbiome adenosine-treated group was compared to the control group, hair follicle length was increased, and hair root diameter was maintained during the experimental periods. In addition, the Cicaria culture medium and the microbial adenosine- and biotin-treated groups maintained the anagen phase, reducing progression to the catagen phase in the hair growth cycle. In conclusion, it was confirmed that the Cicaria culture medium and the microbial adenosine and biotin derived from the culture were effective in inhibiting hair loss.


Asunto(s)
Microbiota , Staphylococcus epidermidis , Adenosina , Alopecia , Biotina , Folículo Piloso , Humanos
10.
Artículo en Inglés | MEDLINE | ID: mdl-33804338

RESUMEN

BST204 is a purified ginseng dry extract that has an inhibitory effect on lipopolysaccharide-induced inflammatory responses, but its effect on muscle atrophy is yet to be investigated. In this study, C2C12 myoblasts were induced to differentiate for three days followed by the treatment of dexamethasone (DEX), a corticosteroid drug, with vehicle or BST204 for one day and subjected to immunoblotting, immunocytochemistry, qRT-PCR and biochemical analysis for mitochondrial function. BST204 alleviates the myotube atrophic effect mediated by DEX via the activation of protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling. Through this pathway, BST204 suppresses the expression of muscle-specific E3 ubiquitin ligases contributing to the enhanced myotube formation and enlarged myotube diameter in DEX-treated myotubes. In addition, BST204 treatment significantly decreases the mitochondrial reactive oxygen species production in DEX-treated myotubes. Furthermore, BST204 improves mitochondrial function by upregulating the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) in DEX-induced myotube atrophy. This study provides a mechanistic insight into the effect of BST204 on DEX-induced myotube atrophy, suggesting that BST204 has protective effects against the toxicity of a corticosteroid drug in muscle and promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.


Asunto(s)
Dexametasona , Fibras Musculares Esqueléticas , Dexametasona/toxicidad , Humanos , Mitocondrias , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/prevención & control , Regulación hacia Arriba
11.
Int J Stem Cells ; 13(3): 342-352, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32840224

RESUMEN

BACKGROUND AND OBJECTIVES: The directed differentiation of pluripotent stem cells into motor neurons is critical for the development of disease modelling and therapeutics to intervene degenerative motor neuron diseases. Cell surface receptor Cdo functions as a coreceptor for Sonic hedgehog (Shh) with Boc and Gas1 in the patterning of ventral spinal cord neurons including motor neurons. However, the discrete function of Cdo is not fully understood. METHODS AND RESULTS: In this study, we examined the role of Cdo in motor neuron generation by utilizing in vitro differentiation of Cdo+/+ and Cdo-/- embryonic stem cells (ESCs). In response to Shh, Cdo-/- ESCs exhibited impaired expression of motor neuron specification markers while dorsal interneuron specification markers were significantly increased, compared to Cdo+/+ ESCs. Reactivation of Shh signalling pathway with Smoothened (Smo) agonist (SAG) restored motor neuron specification in Cdo-/- ESCs. In addition, electrophysiological analysis revealed the immature electrical features of Cdo-/- ESCs-derived neurons which was restored by SAG. CONCLUSIONS: Taken together, these data suggest that Cdo as a Shh coreceptor is required for the induction of motor neuron generation by fully activating Shh signalling pathway and provide additional insights into the biology of motor neuron development.

12.
Cell Death Dis ; 11(5): 359, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398756

RESUMEN

Various stresses, including oxidative stress, impair the proliferative capacity of muscle stem cells leading to declined muscle regeneration related to aging or muscle diseases. ZNF746 (PARIS) is originally identified as a substrate of E3 ligase Parkin and its accumulation is associated with Parkinson's disease. In this study, we investigated the role of PARIS in myoblast function. PARIS is expressed in myoblasts and decreased during differentiation. PARIS overexpression decreased both proliferation and differentiation of myoblasts without inducing cell death, whereas PARIS depletion enhanced myoblast differentiation. Interestingly, high levels of PARIS in myoblasts or fibroblasts induced cellular senescence with alterations in gene expression associated with p53 signaling, inflammation, and response to oxidative stress. PARIS overexpression in myoblasts starkly enhanced oxidative stress and the treatment of an antioxidant Trolox attenuated the impaired proliferation caused by PARIS overexpression. FoxO1 and p53 proteins are elevated in PARIS-overexpressing cells leading to p21 induction and the depletion of FoxO1 or p53 reduced p21 levels induced by PARIS overexpression. Furthermore, both PARIS and FoxO1 were recruited to p21 promoter region and Trolox treatment attenuated FoxO1 recruitment. Taken together, PARIS upregulation causes oxidative stress-related FoxO1 and p53 activation leading to p21 induction and cellular senescence of myoblasts.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Mioblastos/metabolismo , Estrés Oxidativo/fisiología , Proteínas Represoras/metabolismo , Envejecimiento/fisiología , Animales , Antioxidantes/metabolismo , Diferenciación Celular/genética , Senescencia Celular/fisiología , Humanos , Ratones , Proteína p53 Supresora de Tumor/metabolismo
13.
Materials (Basel) ; 13(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260227

RESUMEN

Carbon nanotubes (CNTs) are considered a promising nanomaterial for diverse applications owing to their attractive physicochemical properties such as high surface area, superior mechanical and thermal strength, electrochemical activity, and so on. Different techniques like arc discharge, laser vaporization, chemical vapor deposition (CVD), and vapor phase growth are explored for the synthesis of CNTs. Each technique has advantages and disadvantages. The physicochemical properties of the synthesized CNTs are profoundly affected by the techniques used in the synthesis process. Here, we briefly described the standard methods applied in the synthesis of CNTs and their use in the agricultural and biotechnological fields. Notably, better seed germination or plant growth was noted in the presence of CNTs than the control. However, the exact mechanism of action is still unclear. Significant improvements in the electrochemical performances have been observed in CNTs-doped electrodes than those of pure. CNTs or their derivatives are also utilized in wastewater treatment. The high surface area and the presence of different functional groups in the functionalized CNTs facilitate the better adsorption of toxic metal ions or other chemical moieties. CNTs or their derivatives can be applied for the storage of hydrogen as an energy source. It has been observed that the temperature widely influences the hydrogen storage ability of CNTs. This review paper highlighted some recent development on electrochemical platforms over single-walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs), and nanocomposites as a promising biomaterial in the field of agriculture and biotechnology. It is possible to tune the properties of carbon-based nanomaterials by functionalization of their structure to use as an engineering toolkit for different applications, including agricultural and biotechnological fields.

14.
Appl Plant Sci ; 8(3): e11329, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32185120

RESUMEN

PREMISE: The common sowthistle, Sonchus oleraceus (Asteraceae), is a globally invasive weedy species. In order to investigate its genetic diversity, population genetic structure, and evolutionary history, we developed and characterized nuclear simple sequence repeat markers (SSRs or microsatellites). METHODS AND RESULTS: Seventeen microsatellite primer pairs were developed based on the Illumina sequence data. Ten developed SSR loci were polymorphic in four populations sampled from broad geographical regions. The number of alleles per locus ranged from one to 11, and the levels of observed and expected heterozygosity ranged from 0.000 to 1.000 and from 0.000 to 0.801, respectively. Up to 82% of the newly developed primer pairs were successfully amplified in the congeneric taxa S. asper, S. asper subsp. glaucescens, S. canariensis, and S. palmensis. CONCLUSIONS: The SSR markers developed in this study will be useful for future population genetic studies on S. oleraceus and other congeneric species.

15.
J Cachexia Sarcopenia Muscle ; 11(4): 1089-1103, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32103583

RESUMEN

BACKGROUND: Perturbation in cell adhesion and growth factor signalling in satellite cells results in decreased muscle regenerative capacity. Cdon (also called Cdo) is a component of cell adhesion complexes implicated in myogenic differentiation, but its role in muscle regeneration remains to be determined. METHODS: We generated inducible satellite cell-specific Cdon ablation in mice by utilizing a conditional Cdon allele and Pax7 CreERT2 . To induce Cdon ablation, mice were intraperitoneally injected with tamoxifen (tmx). Using cardiotoxin-induced muscle injury, the effect of Cdon depletion on satellite cell function was examined by histochemistry, immunostaining, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Isolated myofibers or myoblasts were utilized to determine stem cell function and senescence. To determine pathways related to Cdon deletion, injured muscles were subjected to RNA sequencing analysis. RESULTS: Satellite cell-specific Cdon ablation causes impaired muscle regeneration with fibrosis, likely attributable to decreased proliferation, and senescence, of satellite cells. Cultured Cdon-depleted myofibers exhibited 32 ± 9.6% of EdU-positive satellite cells compared with 58 ± 4.4% satellite cells in control myofibers (P < 0.05). About 32.5 ± 3.7% Cdon-ablated myoblasts were positive for senescence-associated ß-galactosidase (SA-ß-gal) while only 3.6 ± 0.5% of control satellite cells were positive (P < 0.001). Transcriptome analysis of muscles at post-injury Day 4 revealed alterations in genes related to mitogen-activated protein kinase signalling (P < 8.29 e-5 ) and extracellular matrix (P < 2.65 e-24 ). Consistent with this, Cdon-depleted tibialis anterior muscles had reduced phosphorylated extracellular signal-regulated kinase (p-ERK) protein levels and expression of ERK targets, such as Fos (0.23-fold) and Egr1 (0.31-fold), relative to mock-treated control muscles (P < 0.001). Cdon-depleted myoblasts exhibited impaired ERK activation in response to basic fibroblast growth factor. Cdon ablation resulted in decreased and/or mislocalized integrin ß1 activation in satellite cells (weak or mislocalized integrin1 in tmx = 38.7 ± 1.9%, mock = 21.5 ± 6%, P < 0.05), previously linked with reduced fibroblast growth factor (FGF) responsiveness in aged satellite cells. In mechanistic studies, Cdon interacted with and regulated cell surface localization of FGFR1 and FGFR4, likely contributing to FGF responsiveness of satellite cells. Satellite cells from a progeria model, Zmpste24-/- myofibers, showed decreased Cdon levels (Cdon-positive cells in Zmpste24-/- = 63.3 ± 11%, wild type = 90 ± 7.7%, P < 0.05) and integrin ß1 activation (weak or mislocalized integrin ß1 in Zmpste24-/- = 64 ± 6.9%, wild type = 17.4 ± 5.9%, P < 0.01). CONCLUSIONS: Cdon deficiency in satellite cells causes impaired proliferation of satellite cells and muscle regeneration via aberrant integrin and FGFR signalling.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Músculo Esquelético/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Diferenciación Celular , Humanos , Ratones , Regeneración , Transducción de Señal
16.
J Cachexia Sarcopenia Muscle ; 11(4): 1070-1088, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32096917

RESUMEN

BACKGROUND: Muscle wasting, resulting from aging or pathological conditions, leads to reduced quality of life, increased morbidity, and increased mortality. Much research effort has been focused on the development of exercise mimetics to prevent muscle atrophy and weakness. In this study, we identified indoprofen from a screen for peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) inducers and report its potential as a drug for muscle wasting. METHODS: The effects of indoprofen treatment on dexamethasone-induced atrophy in mice and in 3-phosphoinositide-dependent protein kinase-1 (PDK1)-deleted C2C12 myotubes were evaluated by immunoblotting to determine the expression levels of myosin heavy chain and anabolic-related and oxidative metabolism-related proteins. Young, old, and disuse-induced muscle atrophic mice were administered indoprofen (2 mg/kg body weight) by gavage. Body weight, muscle weight, grip strength, isometric force, and muscle histology were assessed. The expression levels of muscle mass-related and function-related proteins were analysed by immunoblotting or immunostaining. RESULTS: In young (3-month-old) and aged (22-month-old) mice, indoprofen treatment activated oxidative metabolism-related enzymes and led to increased muscle mass. Mechanistic analysis using animal models and muscle cells revealed that indoprofen treatment induced the sequential activation of AKT/p70S6 kinase (S6K) and AMP-activated protein kinase (AMPK), which in turn can augment protein synthesis and PGC-1α induction, respectively. Structural prediction analysis identified PDK1 as a target of indoprofen and, indeed, short-term treatment with indoprofen activated the PDK1/AKT/S6K pathway in muscle cells. Consistent with this finding, PDK1 inhibition abrogated indoprofen-induced AKT/S6K activation and hypertrophic response. CONCLUSIONS: Our findings demonstrate the effects of indoprofen in boosting skeletal muscle mass through the sequential activation of PDK1/AKT/S6K and AMPK/PGC-1α. Taken together, our results suggest that indoprofen represents a potential drug to prevent muscle wasting and weakness related to aging or muscle diseases.


Asunto(s)
Inhibidores de la Ciclooxigenasa/uso terapéutico , Indoprofeno/uso terapéutico , Atrofia Muscular/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Inhibidores de la Ciclooxigenasa/farmacología , Humanos , Indoprofeno/farmacología , Masculino , Ratones
17.
Cell Death Differ ; 27(2): 573-586, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31243342

RESUMEN

MyoD functions as a master regulator to induce muscle-specific gene expression and myogenic differentiation. Here, we demonstrate a positive role of Protein arginine methyltransferase 7 (Prmt7) in MyoD-mediated myoblast differentiation through p38MAPK activation. Prmt7 depletion in primary or C2C12 myoblasts impairs cell cycle withdrawal and myogenic differentiation. Furthermore, Prmt7 depletion decreases the MyoD-reporter activities and the MyoD-mediated myogenic conversion of fibroblasts. Together with MyoD, Prmt7 is recruited to the Myogenin promoter region and Prmt7 depletion attenuates the recruitment of MyoD and its coactivators. The mechanistic study reveals that Prmt7 methylates p38MAPKα at the arginine residue 70, thereby promoting its activation which in turn enhances MyoD activities. The arginine residue 70 to alanine mutation in p38MAPKα impedes MyoD/E47 heterodimerization and the recruitment of Prmt7, MyoD and Baf60c to the Myogenin promoter resulting in blunted Myogenin expression. In conclusion, Prmt7 promotes MyoD-mediated myoblast differentiation through methylation of p38MAPKα at arginine residue 70.


Asunto(s)
Arginina/metabolismo , Mioblastos/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Diferenciación Celular , Metilación , Ratones , Ratones Noqueados , Mioblastos/citología , Proteína-Arginina N-Metiltransferasas/deficiencia
18.
J Ginseng Res ; 43(3): 475-481, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31308819

RESUMEN

BACKGROUND: The ginsenoside Rg1 has been shown to exert various pharmacological activities with health benefits. Previously, we have reported that Rg1 promoted myogenic differentiation and myotube growth in C2C12 myoblasts. In this study, the in vivo effect of Rg1 on fiber-type composition and oxidative metabolism in skeletal muscle was examined. METHODS: To examine the effect of Rg1 on skeletal muscle, 3-month-old mice were treated with Rg1 for 5 weeks. To assess muscle strength, grip strength tests were performed, and the lower hind limb muscles were harvested, followed by various detailed analysis, such as histological staining, immunoblotting, immunostaining, and real-time quantitative reverse transcription polymerase chain reaction. In addition, to verify the in vivo data, primary myoblasts isolated from mice were treated with Rg1, and the Rg1 effect on myotube growth was examined by immunoblotting and immunostaining analysis. RESULTS: Rg1 treatment increased the expression of myosin heavy chain isoforms characteristic for both oxidative and glycolytic muscle fibers; increased myofiber sizes were accompanied by enhanced muscle strength. Rg1 treatment also enhanced oxidative muscle metabolism with elevated oxidative phosphorylation proteins. Furthermore, Rg1-treated muscles exhibited increased levels of anabolic S6 kinase signaling. CONCLUSION: Rg1 improves muscle functionality via enhancing muscle gene expression and oxidative muscle metabolism in mice.

19.
IEEE Trans Nanobioscience ; 18(3): 463-468, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31056505

RESUMEN

Human mesenchymal stem cells (hMSCs) have attracted significant attention for tissue engineering because of their ability to differentiate into bone cells, chondrocytes, adipocytes, and muscle cells. Single-walled carbon nanotubes (SWCNTs) have been considered as a potential material for tissue engineering applications due to their unique properties, such as high aspect ratio, excellent electrocatalytic activity, and biocompatibility. Here we prepared exfoliated SWCNTs layers through an ultra-sonication process in the acidic medium and evaluated their cytotoxicity using hMSCs. Improved viability and osteogenesis of hMSCs were observed in the presence of exfoliated SWCNTs. Besides, the higher expression of osteogenic differentiation-related genes in the presence of exfoliated SWCNTs further confirmed their enhanced osteogenic nature. These results indicated the potential of SWCNTs as a biomaterial for tissue engineering applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Mesenquimatosas , Nanotubos de Carbono , Osteogénesis/efectos de los fármacos , Materiales Biocompatibles/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad
20.
Autophagy ; 15(6): 1069-1081, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30653406

RESUMEN

Protein arginine methyltransferases (PRMTs) have emerged as important regulators of skeletal muscle metabolism and regeneration. However, the direct roles of the various PRMTs during skeletal muscle remodeling remain unclear. Using skeletal muscle-specific prmt1 knockout mice, we examined the function and downstream targets of PRMT1 in muscle homeostasis. We found that muscle-specific PRMT1 deficiency led to muscle atrophy. PRMT1-deficient muscles exhibited enhanced expression of a macroautophagic/autophagic marker LC3-II, FOXO3 and muscle-specific ubiquitin ligases, TRIM63/MURF-1 and FBXO32, likely contributing to muscle atrophy. The mechanistic study reveals that PRMT1 regulates FOXO3 through PRMT6 modulation. In the absence of PRMT1, increased PRMT6 specifically methylates FOXO3 at arginine 188 and 249, leading to its activation. Finally, we demonstrate that PRMT1 deficiency triggers FOXO3 hyperactivation, which is abrogated by PRMT6 depletion. Taken together, PRMT1 is a key regulator for the PRMT6-FOXO3 axis in the control of autophagy and protein degradation underlying muscle maintenance. Abbreviations: Ad-RNAi: adenovirus-delivered small interfering RNA; AKT: thymoma viral proto-oncogene; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CSA: cross-sectional area; EDL: extensor digitorum longus; FBXO32: F-box protein 32; FOXO: forkhead box O; GAS: gatrocnemieus; HDAC: histone deacetylase; IGF: insulin-like growth factor; LAMP: lysosomal-associated membrane protein; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mKO: Mice with skeletal muscle-specific deletion of Prmt1; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; MYL1/MLC1f: myosin, light polypeptide 1; PRMT: protein arginine N-methyltransferase; sgRNA: single guide RNA; SQSTM1: sequestosome 1; SOL: soleus; TA: tibialis anterior; TRIM63/MURF-1: tripartite motif-containing 63; YY1: YY1 transcription factor.


Asunto(s)
Autofagia/genética , Proteína Forkhead Box O3/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Proteína Forkhead Box O3/química , Proteína Forkhead Box O3/genética , Células HEK293 , Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Metilación , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Fosforilación , Proto-Oncogenes Mas , Transducción de Señal/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factor de Transcripción YY1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...