Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 24157, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921189

RESUMEN

The microbial food fermentation industry requires real-time monitoring and accurate quantification of cells. However, filamentous fungi are difficult to quantify as they have complex cell types such as pellet, spores, and dispersed hyphae. In this study, numerous data of microscopic image intensity (MII) were used to develop a simple and accurate quantification method of Cordyceps mycelium. The dry cell weight (DCW) of the sample collected during the fermentation was measured. In addition, the intensity values were obtained through the ImageJ program after converting the microscopic images. The prediction model obtained by analyzing the correlation between MII and DCW was evaluated through a simple linear regression method and found to be statistically significant (R2 = 0.941, p < 0.001). In addition, validation with randomly selected samples showed significant accuracy, thus, this model is expected to be used as a valuable tool for predicting and quantifying fungal growth in various industries.


Asunto(s)
Cordyceps , Modelos Biológicos , Micelio , Cordyceps/citología , Cordyceps/crecimiento & desarrollo , Micelio/citología , Micelio/crecimiento & desarrollo
2.
Foods ; 9(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126736

RESUMEN

Carbon-neutral and eco-friendly biomass-based processes are recognized as a frontier technology for sustainable development. In particular, biopolymers are expected to replace petrochemical-based films that are widely used in food packaging. In this study, the fabrication conditions of functional (antioxidant and antibacterial) bioelastomers were investigated using by-products from the juice processing (experimental group) and freeze-dried whole fruit (control group). Bioelastomer was fabricated by a casting method in which polydimethylsiloxane (PDMS) was mixed with 25 or 50 wt% aronia powder (juice processing by-products and freeze-dried whole fruit). The mechanical properties of the bioelastomers were measured based on tensile strength and Young's modulus. When the mixture contained 50 wt% aronia powder, the strength was not appropriate for the intended purpose. Next, the surface and chemical properties of the bioelastomer were analyzed; the addition of aronia powder did not significantly change these properties when compared to PDMS film (no aronia powder). However, the addition of aronia powder had a significant effect on antioxidant and antimicrobial activities and showed higher activity with 50 wt% than with 25 wt%. In particular, bioelastomers fabricated from aronia juice processing by-products exhibited approximately 1.4-fold lower and 1.5-fold higher antioxidant and antimicrobial activities, respectively, than the control group (bioelastomers fabricated from freeze-dried aronia powder).

3.
Biomolecules ; 9(9)2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500325

RESUMEN

Cordycepin, a beneficial bioactive product specifically found in Cordyceps, has received attention in various bioindustrial applications such as in pharmaceuticals, functional foods, and cosmetics, due to its significant functions. However, low productivity of cordycepin is a barrier to commercialization. In this study, Cordyceps militaris was mutated by UV irradiation to improve the cordycepin production. The highest producer KYL05 strain was finally selected and its cordycepin production was increased about 1.5-fold compared to wild type. In addition, the effects of culture conditions were fundamentally investigated. Optimal conditions were as follows: pH 6, temperature of 25 °C, shaking speed of 150 rpm, and culture time of 6 days. Effects of medium component on cordycepin production were also investigated by using various carbon and nitrogen sources. It was found that glucose and casein hydrolysate (CH) were most effective as carbon and nitrogen sources in cordycepin production (2.3-fold improvement) with maximum cordycepin production of about 445 mg/L. In particular, production was significantly affected by CH. These results should be of value in improving the efficiency of mass production of cordycepin.


Asunto(s)
Caseínas/metabolismo , Cordyceps/metabolismo , Técnicas de Cultivo/métodos , Desoxiadenosinas/biosíntesis , Cordyceps/crecimiento & desarrollo , Cordyceps/efectos de la radiación , Concentración de Iones de Hidrógeno , Inmersión , Mutación/efectos de la radiación , Temperatura , Rayos Ultravioleta
4.
Polymers (Basel) ; 11(7)2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288462

RESUMEN

Conductive biopolymers, an important class of functional materials, have received attention in various fields because of their unique electrical, optical, and physical properties. In this study, the polymerization of heme into hemozoin was carried out in an in vitro system by the newly developed heme polymerase (histidine-rich protein 2 (HRP-II)). The HRP-II was produced by recombinant E. coli BL21 from the Plasmodium falciparum gene. To improve the hemozoin production, the reaction conditions on the polymerization were investigated and the maximum production was achieved after about 790 µM at 34 °C with 200 rpm for 24 h. As a result, the production was improved about two-fold according to the stepwise optimization in an in vitro system. The produced hemozoin was qualitatively analyzed using the Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Finally, it was confirmed that the enzymatically polymerized hemozoin had similar physical properties to chemically synthesized hemozoin. These results could represent a significant potential for nano-biotechnology applications, and also provide guidance in research related to hemozoin utilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...