Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
1.
J Pineal Res ; 76(4): e12958, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747060

RESUMEN

Endothelial-to-mesenchymal transition (EndMT) is a complex biological process of cellular transdifferentiation by which endothelial cells (ECs) lose their characteristics and acquire mesenchymal properties, leading to cardiovascular remodeling and complications in the adult cardiovascular diseases environment. Melatonin is involved in numerous physiological and pathological processes, including aging, and has anti-inflammatory and antioxidant activities. This molecule is an effective therapeutic candidate for preventing oxidative stress, regulating endothelial function, and maintaining the EndMT balance to provide cardiovascular protection. Although recent studies have documented improved cardiac function by melatonin, the mechanism of action of melatonin on EndMT remains unclear. The present study investigated the effects of melatonin on induced EndMT by transforming growth factor-ß2/interleukin-1ß in both in vivo and in vitro models. The results revealed that melatonin reduced the migratory ability and reactive oxygen species levels of the cells and ameliorated mitochondrial dysfunction in vitro. Our findings indicate that melatonin prevents endothelial dysfunction and inhibits EndMT by activating related pathways, including nuclear factor kappa B and Smad. We also demonstrated that this molecule plays a crucial role in restoring cardiac function by regulating the EndMT process in the ischemic myocardial condition, both in vessel organoids and myocardial infarction (MI) animal models. In conclusion, melatonin is a promising agent that attenuates EC dysfunction and ameliorates cardiac damage compromising the EndMT process after MI.


Asunto(s)
Melatonina , FN-kappa B , Melatonina/farmacología , Animales , FN-kappa B/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Ratones , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Especies Reactivas de Oxígeno/metabolismo
2.
Mar Pollut Bull ; 202: 116306, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574500

RESUMEN

In this study, we investigated the combined effects of hypoxia and NPs on the water flea Daphnia magna, a keystone species in freshwater environments. To measure and understand the oxidative stress responses, we used acute toxicity tests, fluorescence microscopy, enzymatic assays, Western blot analyses, and Ingenuity Pathway Analysis. Our findings demonstrate that hypoxia and NPs exhibit a negative synergy that increases oxidative stress, as indicated by heightened levels of reactive oxygen species and antioxidant enzyme activity. These effects lead to more severe reproductive and growth impairments in D. magna compared to a single-stressor exposure. In this work, molecular investigations revealed complex pathway activations involving HIF-1α, NF-κB, and mitogen-activated protein kinase, illustrating the intricate molecular dynamics that can occur in combined stress conditions. The results underscore the amplified physiological impacts of combined environmental stressors and highlight the need for integrated strategies in the management of aquatic ecosystems.


Asunto(s)
Daphnia , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Daphnia/fisiología , Daphnia/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Hipoxia , Daphnia magna
3.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612741

RESUMEN

Although stem cells are a promising avenue for harnessing the potential of adipose tissue, conventional two-dimensional (2D) culture methods have limitations. This study explored the use of three-dimensional (3D) cultures to preserve the regenerative potential of adipose-derived stem cells (ADSCs) and investigated their cellular properties. Flow cytometric analysis revealed significant variations in surface marker expressions between the two culture conditions. While 2D cultures showed robust surface marker expressions, 3D cultures exhibited reduced levels of CD44, CD90.2, and CD105. Adipogenic differentiation in 3D organotypic ADSCs faced challenges, with decreased organoid size and limited activation of adipogenesis-related genes. Key adipocyte markers, such as lipoprotein lipase (LPL) and adipoQ, were undetectable in 3D-cultured ADSCs, unlike positive controls in 2D-cultured mesenchymal stem cells (MSCs). Surprisingly, 3D-cultured ADSCs underwent mesenchymal-epithelial transition (MET), evidenced by increased E-cadherin and EpCAM expression and decreased mesenchymal markers. This study highlights successful ADSC organoid formation, notable MSC phenotype changes in 3D culture, adipogenic differentiation challenges, and a distinctive shift toward an epithelial-like state. These findings offer insights into the potential applications of 3D-cultured ADSCs in regenerative medicine, emphasizing the need for further exploration of underlying molecular mechanisms.


Asunto(s)
Adiposidad , Sistemas Microfisiológicos , Animales , Ratones , Obesidad , Organoides , Adipocitos
4.
Gastrointest Endosc ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583543

RESUMEN

BACKGROUND AND AIMS: Endobiliary radiofrequency ablation (RFA) is an emerging endoscopic palliative adjunctive therapy used for the local treatment of unresectable malignant biliary obstruction (MBO). However, irregular ablation ranges caused by insufficient electrode-to-bile duct contact pose a significant obstacle. The aim was to investigate the feasibility of a self-expandable stent (SES)-based electrode with a customized RFA generator in the porcine liver and common bile duct (CBD). METHODS: A SES-RFA system with polarity-switching was developed to perform endobiliary RFA. The ablation ranges of 20 ablation protocols were evaluated to validate the feasibility of the newly developed RFA system in the porcine liver. Nine of the 20 ablation protocols were selected for evaluation in the porcine CBD with cholangiography, endoscopy, and histological and immunohistochemical analysis. RESULTS: The SES-RFA system with polarity-switching was successfully constructed and demonstrated high accuracy and reproducibility. The ablation area was clearly identified between the two SESs. The ablation ranges and degree of mucosal damage including TUNEL- and HSP70-positive depositions increased proportionally with ablation protocols in the porcine liver and CBD (all P < .05). Ablation length and depth linearly increased with ablation protocols from 8.74 ± 0.25 to 31.25 ± 0.67 mm and 1.61 ± 0.09 to 11.94 ± 0.44 mm, respectively. CONCLUSIONS: The SES-RFA system with polarity-switching between electrodes provided an even circumferential area of ablation and enhanced ablation depth between the electrodes. This novel endobiliary RFA system is a promising modality for local ablation in patients with unresectable MBO.

5.
Food Chem ; 449: 139196, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581787

RESUMEN

Phycoerythrin (PE) is a phycobiliprotein holding great potential as a high-value food colorant and medicine. Deep eutectic solvent (DES)-based ultrasound-assisted extraction (UAE) was applied to extract B-PE by disrupting the resistant polysaccharide cell wall of Porphyridium purpureum. The solubility of cell wall monomers in 31 DESs was predicted using COSMO-RS. Five glycerol-based DESs were tested for extraction, all of which showed significantly higher B-PE yields by up to 13.5 folds than water. The DES-dependent B-PE extraction efficiencies were proposedly associated with different cell disrupting capabilities and protein stabilizing effects of DESs. The DES-based UAE method could be considered green according to a metric assessment tool, AGREEprep. The crude extract containing DES was further subjected to aqueous two-phase system, two-step ammonium sulfate precipitation, and ultrafiltration processes. The final purified B-PE had a PE purity ratio of 3.60 and a PC purity ratio of 0.08, comparable to the purity of commercial products.


Asunto(s)
Biomasa , Disolventes Eutécticos Profundos , Microalgas , Ficobiliproteínas , Microalgas/química , Ficobiliproteínas/química , Ficobiliproteínas/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Porphyridium/química , Tecnología Química Verde , Fraccionamiento Químico/métodos , Ultrasonido
6.
Anticancer Res ; 44(3): 1051-1062, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423668

RESUMEN

BACKGROUND/AIM: Evidence supports that use of aripiprazole sensitizes drug-resistant oral cancer cells. The aim of the study was to investigate whether aripiprazole can achieve sensitization of highly drug-resistant breast cancer cells, as well as identify its relevant mechanisms of action. MATERIALS AND METHODS: MCF-7/ADR, KB, and KBV20C breast cancer cells were treated with aripiprazole, vincristine (VIC), vinorelbine, vinblastine and their combination. Cell viability assay, annexin V analyses, cellular morphology and density observation with a microscope, western-blotting, fluorescence-activated cell sorting (FACS), and analysis for P-gp inhibitory activity were performed to investigate the drugs' mechanism of action. RESULTS: We found that high drug resistance in MCF-7/ADR cells results from high P-gp inhibitory activity via overexpression of P-gp. Aripiprazole reduced cell viability, increased G2 arrest, and upregulated apoptosis when used as a co-treatment with VIC. Furthermore, we demonstrated that co-treatment with vinorelbine and vinblastine increased the sensitization of MCF-7/ADR breast cancer cells to aripiprazole. We confirmed that VIC-aripiprazole combination has much higher sensitization effects than either VIC-thioridazine or VIC-trifluoperazine co-treatment in MCF-7/ADR cells, since the previously known bipolar drugs (thioridazine and trifluoperazine) has lower P-gp inhibitory activity. However, aripiprazole-induced sensitization was not observed in VIC-treated MDA-MB-231 breast cancer cells suggesting that combination therapy with aripiprazole is specific for P-gp-overexpressing drug-resistant breast cancer cells. CONCLUSION: Co-treatment with low doses of aripiprazole sensitized MCF-7/ADR cells to VIC. Combination therapy with aripiprazole may be a valuable tool for delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant breast cancer cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Neoplasias de la Mama , Humanos , Femenino , Vincristina/farmacología , Aripiprazol/farmacología , Vinorelbina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Vinblastina/farmacología , Células MCF-7 , Tioridazina/farmacología , Trifluoperazina/farmacología , Resistencia a Antineoplásicos , Línea Celular Tumoral , Subfamilia B de Transportador de Casetes de Unión a ATP , Doxorrubicina/farmacología
7.
Sci Total Environ ; 920: 170902, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38354791

RESUMEN

Triclosan (TCS) is an antibacterial agent commonly used in personal care products. Due to its widespread use and improper disposal, it is also a pervasive contaminant, particularly in aquatic environments. When released into water bodies, TCS can induce deleterious effects on developmental and physiological aspects of aquatic organisms and also interact with environmental stressors such as weather, metals, pharmaceuticals, and microplastics. Multiple studies have described the adverse effects of TCS on aquatic organisms, but few have reported on the interactions between TCS and other environmental conditions and pollutants. Because aquatic environments include a mix of contaminants and natural factors can correlate with contaminants, it is important to understand the toxicological outcomes of combinations of substances. Due to its lipophilic characteristics, TCS can interact with a wide range of substances and environmental stressors in aquatic environments. Here, we identify a need for caution when using TCS by describing not only the effects of exposure to TCS alone on aquatic organisms but also how toxicity changes when it acts in combination with multiple environmental stressors.


Asunto(s)
Contaminantes Ambientales , Triclosán , Contaminantes Químicos del Agua , Triclosán/análisis , Organismos Acuáticos , Plásticos , Contaminantes Químicos del Agua/análisis
8.
Int J Stem Cells ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267367

RESUMEN

Tissue-specific adult stem cells are pivotal in maintaining tissue homeostasis, especially in the rapidly renewing intestinal epithelium. At the heart of this process are leucine-rich repeat-containing G protein-coupled receptor 5-expressing crypt base columnar cells (CBCs) that differentiate into various intestinal epithelial cells. However, while these CBCs are vital for tissue turnover, they are vulnerable to cytotoxic agents. Recent advances indicate that alternative stem cell sources drive the epithelial regeneration post-injury. Techniques like lineage tracing and single-cell RNA sequencing, combined with in vitro organoid systems, highlight the remarkable cellular adaptability of the intestinal epithelium during repair. These regenerative responses are mediated by the reactivation of conserved stem cells, predominantly quiescent stem cells and revival stem cells. With focus on these cells, this review unpacks underlying mechanisms governing intestinal regeneration and explores their potential clinical applications.

9.
J Hazard Mater ; 466: 133448, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244454

RESUMEN

Rapid, anthropogenic activity-induced global warming is a severe problem that not only raises water temperatures but also shifts aquatic environments by increasing the bioavailability of heavy metals (HMs), with potentially complicated effects on aquatic organisms, including small aquatic invertebrates. For this paper, we investigated the combined effects of temperature (23 and 28 °C) and methylmercury (MeHg) by measuring physiological changes, bioaccumulation, oxidative stress, antioxidants, and the mitogen-activated protein kinase signaling pathway in the marine rotifer Brachionus plicatilis. High temperature and MeHg adversely affected the survival rate, lifespan, and population of rotifers, and bioaccumulation, oxidative stress, and biochemical reactions depended on the developmental stage, with neonates showing higher susceptibility than adults. These findings demonstrate that increased temperature enhances potentially toxic effects from MeHg, and susceptibility differs with the developmental stage. This study provides a comprehensive understanding of the combined effects of elevated temperature and MeHg on rotifers. ENVIRONMENTAL IMPLICATION: Methylmercury (MeHg) is a widespread and harmful heavy metal that can induce lethal effects on aquatic organisms in even trace amounts. The toxicity of metals can vary depending on various environmental conditions. In particular, rising temperatures are considered a major factor affecting bioavailability and toxicity by changing the sensitivity of organisms. However, there are few studies on the combinational effects of high temperatures and MeHg on aquatic animals, especially invertebrates. Our research would contribute to understanding the actual responses of aquatic organisms to complex aquatic environments.


Asunto(s)
Metales Pesados , Compuestos de Metilmercurio , Rotíferos , Contaminantes Químicos del Agua , Animales , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/metabolismo , Temperatura , Organismos Acuáticos , Estrés Oxidativo , Metales Pesados/metabolismo , Contaminantes Químicos del Agua/metabolismo
10.
Somatosens Mot Res ; 41(1): 48-55, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36721377

RESUMEN

PURPOSE AND METHOD: The purpose of this study was to determine the changes in the Blood Oxygen Level Dependent signal of Primary somatosensory area (S1) and Brodmann area 3 (BA3) per finger and phalanx in comparison to the activation voxel when 250 Hz vibratory stimulation with high sensitivity for the Pacinian corpuscle was given to the four fingers and three phalanges. RESULTS: The result of analyzing the activation voxel showed a significant difference for S1 per finger and phalanx, but for BA3, no significant difference was observed despite a similar trend to S1. In contrast, the activation intensity (BOLD) displayed a significant difference for S1 per finger and phalanx and for BA3, where the activation voxel had no significant variation. In addition, while the result of S1 did not indicate whether the index or the little fingers had the highest sensitivity based on the BOLD signal per finger, the result of BA3 marked the strongest BOLD signal for the little finger as a response to 250 Hz vibratory stimulation. The activation intensity per phalanx was the highest for the intermediate phalanx for S1 and BA3, which was in line with a previous study comparing the activation voxel. CONCLUSIONS: The method based on the intensity of the nerve activation is presumed to have high sensitivity as the signal intensity is monitored within a specific, defined area. Thus, for the extraction of brain activation patterns of micro-domains, such as BA3, monitoring the BOLD signal that reflects the nerve activation intensity more sensitively is likely to be advantageous.


Asunto(s)
Imagen por Resonancia Magnética , Corteza Somatosensorial , Corteza Somatosensorial/fisiología , Imagen por Resonancia Magnética/métodos , Dedos/inervación , Mapeo Encefálico/métodos
11.
Chemosphere ; 349: 140857, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070616

RESUMEN

Growing concerns exist about increasing chemical usage and the potential health risks. Developing an efficient strategy to evaluate or predict the toxicity of chemicals is necessary. The mitochondria are essential organelles for cell maintenance and survival but also serve as one of the main targets of toxic chemicals. Mitochondria play an important role in the pathology of respiratory disease, and many environmental chemicals may induce impairment of the respiratory system through mitochondrial damage. This study aimed to develop integrated in vitro approaches to identify chemicals that could induce adverse health effects by increasing mitochondria-mediated oxidative stress using the H441 cells, which have a club-cell-like phenotype. Twenty-six environmental toxicants (biocides, phthalates, bisphenols, and particles) were tested, and each parameter was compared with eleven reference compounds. The inhibitory concentrations (IC20 and IC50) and benchmark doses (BMD) of the tested compounds were estimated from three in vitro assays, and the toxic concentration was determined. At the lowest IC20, the effects of compounds on mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) were compared. Principal component analysis and k-mean clustering were performed to cluster the chemicals that had comparable effects on the cells. Chemicals that induce mitochondrial damage at different concentrations were used for an in-depth high-tier assessment and classification as electron transport system (ETS) uncoupling or inhibiting agents. Additionally, using in vitro to in vivo extrapolation (IVIVE) tools, equivalent administration doses and maximum plasma concentrations of tested compounds in human were estimated. This study suggests an in vitro approach to identifying mitochondrial damage by integrating several in vitro toxicity tests and calculation modeling.


Asunto(s)
Sustancias Peligrosas , Mitocondrias , Humanos , Mitocondrias/metabolismo , Sustancias Peligrosas/toxicidad , Transporte de Electrón , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
12.
Planta Med ; 90(4): 256-266, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38040033

RESUMEN

Hyperglycemia is a potent risk factor for the development and progression of diabetes-induced nephropathy. Dendropanoxide (DPx) is a natural compound isolated from Dendropanax morbifera (Araliaceae) that exerts various biological effects. However, the role of DPx in hyperglycemia-induced renal tubular cell injury remains unclear. The present study explored the protective mechanism of DPx on high glucose (HG)-induced cytotoxicity in kidney tubular epithelial NRK-52E cells. The cells were cultured with normal glucose (5.6 mM), HG (30 mM), HG + metformin (10 µM), or HG + DPx (10 µM) for 48 h, and cell cycle and apoptosis were analyzed. Malondialdehyde (MDA), advanced glycation end products (AGEs), and reactive oxygen species (ROS) were measured. Protein-based nephrotoxicity biomarkers were measured in both the culture media and cell lysates. MDA and AGEs were significantly increased in NRK-52E cells cultured with HG, and these levels were markedly reduced by pretreatment with DPx or metformin. DPx significantly reduced the levels of kidney injury molecule-1 (KIM-1), pyruvate kinase M2 (PKM2), selenium-binding protein 1 (SBP1), or neutrophil gelatinase-associated lipocalin (NGAL) in NRK-52E cells cultured under HG conditions. Furthermore, treatment with DPx significantly increased antioxidant enzyme activity. DPx protects against HG-induced renal tubular cell damage, which may be mediated by its ability to inhibit oxidative stress through the protein kinase B/mammalian target of the rapamycin (AKT/mTOR) signaling pathway. These findings suggest that DPx can be used as a new drug for the treatment of high glucose-induced diabetic nephropathy.


Asunto(s)
Hiperglucemia , Metformina , Triterpenos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Glucosa/toxicidad , Estrés Oxidativo , Transducción de Señal , Antioxidantes/farmacología , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Metformina/metabolismo , Metformina/farmacología , Células Epiteliales/metabolismo
13.
Clin Immunol ; 258: 109852, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029848

RESUMEN

Atopic dermatitis (AD) treatment has largely relied on non-specific broad immunosuppressants despite their long-term toxicities until the approval of dupilumab, which blocks IL-4 signaling to target Th2 cell responses. Here, we report the discovery of compound 4aa, a novel compound derived from the structure of chlorophyll a, and the efficacy of chlorophyll a to alleviate AD symptoms by oral administration in human AD patients. 4aa downregulated GATA3 and IL-4 in differentiating Th2 cells by potently blocking IL-4 receptor dimerization. In the murine model, oral administration of 4aa reduced the clinical severity of symptoms and scratching behavior by 76% and 72%, respectively. Notably, the elevated serum levels of Th2 cytokines reduced to levels similar to those in the normal group after oral administration of 4aa. Additionally, the toxicological studies showed favorable safety profiles and good tolerance. In conclusion, 4aa may be applied for novel therapeutic developments for patients with AD.


Asunto(s)
Dermatitis Atópica , Humanos , Ratones , Animales , Dermatitis Atópica/tratamiento farmacológico , Células Th2 , Clorofila A , Interleucina-4 , Citocinas , Diferenciación Celular
14.
Org Lett ; 26(1): 57-61, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38134331

RESUMEN

Site-selective functionalization of saturated N-heterocycles such as pyrrolidines is a central topic in organic synthesis and drug discovery. We herein report the sulfur-assisted rhodium(III)-catalyzed sp3 C-H amidation of pyrrolidines with dioxazolones as amidating agents. The amenability of the thioamide directing group is elucidated by a series of control experiments.

15.
J Hazard Mater ; 465: 133325, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38154181

RESUMEN

Global warming and nanoplastics (NPs) are critical global issues. Among NPs, one of the most hazardous types of plastics, polystyrene (PS), poses ecotoxicological threats to several freshwater organisms. The degree of toxicity of PS-NPs is strongly influenced by various environmental factors. This study illustrates the combined effects of temperature and PS-NPs on the water flea Daphnia magna. The sensitivity of D. magna to PS-NPs was tested under control (23 °C) and elevated temperatures (28 °C). As a result, increased temperatures influenced the uptake and accumulation of PS-NPs. Co-exposure to both higher temperatures and PS-NPs resulted in a drastic decrease in reproductive performance. The level of oxidative stress was found to have increased in a temperature-dependent manner. Oxidative stress was stimulated by both stressors, leading to increased levels of reactive oxygen species and antioxidant enzyme activity supported by upregulation of antioxidant enzyme-related genes under combined PS-NPs exposure and elevated temperature. In the imbalanced status of intracellular redox, activation of the p38 mitogen-activated protein kinase signaling pathway was induced by exposure to PS-NPs at high temperatures, which supported the decline of the reproductive capacity of D. magna. Therefore, our results suggest that PS-NPs exposure along with an increase in temperature significantly affects physiological processes triggered by damage from oxidative stress, leading to severely inhibited reproduction of D. magna.


Asunto(s)
Cladóceros , Contaminantes Químicos del Agua , Animales , Daphnia magna , Microplásticos/metabolismo , Temperatura , Antioxidantes/metabolismo , Daphnia , Plásticos/toxicidad , Poliestirenos/toxicidad , Agua Dulce , Contaminantes Químicos del Agua/análisis
16.
Allergy ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037751

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a complex condition characterized by impaired epithelial barriers and dysregulated immune cells. In this study, we demonstrated Forsythia velutina Nakai extract (FVE) simultaneously inhibits basophils, macrophages, keratinocytes, and T cells that are closely interrelated in AD development. METHODS: We analyzed the effect of FVE on nitric oxide and reactive oxygen species (ROS) production in macrophages, basophil degranulation, T cell activation, and tight junctions in damaged keratinocytes. Expression of cell-type-specific inflammatory mediators was analyzed, and the underlying signaling pathways for anti-inflammatory effects of FVE were investigated. The anti-inflammatory effects of FVE were validated using a DNCB-induced mouse model of AD. Anti-inflammatory activity of compounds isolated from FVE was validated in each immune cell type. RESULTS: FVE downregulated the expression of inflammatory mediators and ROS production in macrophages through TLR4 and NRF2 pathways modulation. It significantly reduced basophil degranulation and expression of type 2 (T2) and pro-inflammatory cytokines by perturbing FcεRI signaling. Forsythia velutina Nakai extract also robustly inhibited the expression of T2 cytokines in activated T cells. Furthermore, FVE upregulated the expression of tight junction molecules in damaged keratinocytes and downregulated leukocyte attractants, as well as IL-33, an inducer of T2 inflammation. In the AD mouse model, FVE showed superior improvement in inflammatory cell infiltration and skin structure integrity compared to dexamethasone. Dimatairesinol, a lignan dimer, was identified as the most potent anti-inflammatory FVE compound. CONCLUSION: Forsythia velutina Nakai extract and its constituent compounds demonstrate promising efficacy as a therapeutic option for prolonged AD treatment by independently inhibiting various cell types associated with AD and disrupting the deleterious link between them.

17.
Nutrients ; 15(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38068826

RESUMEN

Osteoporosis, which is often associated with increased osteoclast activity due to menopause or aging, was the main focus of this study. We investigated the inhibitory effects of water extract of desalted Salicornia europaea L. (WSE) on osteoclast differentiation and bone loss in ovariectomized mice. Our findings revealed that WSE effectively inhibited RANKL-induced osteoclast differentiation, as demonstrated by TRAP staining, and also suppressed bone resorption and F-actin ring formation in a dose-dependent manner. The expression levels of genes related to osteoclast differentiation, including NFATc1, ACP5, Ctsk, and DCSTAMP, were downregulated by WSE. Oral administration of WSE improved bone density and structural parameters in ovariectomized mice. Dicaffeoylquinic acids (DCQAs) and saponins were detected in WSE, with 3,4-DCQA, 3,5-DCQA, and 4,5-DCQA being isolated and identified. All tested DCQAs, including the aforementioned types, inhibited osteoclast differentiation, bone resorption, and the expression of osteoclast-related genes. Furthermore, WSE and DCQAs reduced ROS production mediated by RANKL. These results indicate the potential of WSE and its components, DCQAs, as preventive or therapeutic agents against osteoporosis and related conditions.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Osteoporosis , Femenino , Animales , Ratones , Osteoclastos , Resorción Ósea/tratamiento farmacológico , Enfermedades Óseas Metabólicas/metabolismo , Osteoporosis/tratamiento farmacológico , Ligando RANK/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Diferenciación Celular , Osteogénesis
18.
J Chemother ; : 1-18, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054850

RESUMEN

This study investigated the potential of a newly synthesized histone deacetylase (HDAC) inhibitor, MHY446, in inducing cell death in HCT116 colorectal cancer cells and compared its activity with that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor. The results showed that MHY446 increased the acetylation of histones H3 and H4 and decreased the expression and activity of HDAC proteins in HCT116 cells. Additionally, MHY446 was confirmed to bind more strongly to HDAC1 than HDAC2 and inhibit its activity. In vivo experiments using nude mice revealed that MHY446 was as effective as SAHA in inhibiting HCT116 cell-grafted tumor growth. This study also evaluated the biological effects of MHY446 on cell survival and death pathways. The reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) confirmed that ROS play a role in MHY446-induced cell death by reducing poly(ADP-ribose) polymerase cleavage. MHY446 also induced cell death via endoplasmic reticulum (ER) stress by increasing the expression of ER stress-related proteins. NAC treatment decreased the expression of ER stress-related proteins, indicating that ROS mediate ER stress as an upstream signaling pathway and induce cell death. While MHY446 did not exhibit superior HDAC inhibition efficacy compared to SAHA, it is anticipated to provide innovative insights into the future development of therapeutic agents for human CRC by offering novel chemical structure-activity relationship-related information.

19.
Front Bioeng Biotechnol ; 11: 1244569, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744261

RESUMEN

Background: In-stent restenosis caused by tissue hyperplasia and tumor growth through the wire meshes of an implanted self-expandable metallic stent (SEMS) remains an unresolved obstacle. This study aimed to investigate the safety and efficacy of SEMS-mediated radiofrequency ablation (RFA) for treating stent-induced tissue hyperplasia in a rat gastric outlet obstruction model. Methods: The ablation zone was investigated using extracted porcine liver according to the ablation time. The optimal RFA parameters were evaluated in the dissected rat gastric outlet. We allocated 40 male rats to four groups of 10 rats as follows: group A, SEMS placement only; group B, SEMS-mediated RFA at 4 weeks; group C, SEMS-mediated RFA at 4 weeks and housed until 8 weeks; and group D, SEMS-mediated RFA at 4 and 8 weeks. Endoscopy and fluoroscopy for in vivo imaging and histological and immunohistochemical analysis were performed to compare experimental groups. Results: Stent placement and SEMS-mediated RFA with an optimized RFA parameter were technically successful in all groups. Granulation tissue formation-related variables were significantly higher in group A than in groups B-D (all p < 0.05). Endoscopic and histological findings confirmed that the degrees of stent-induced tissue hyperplasia in group D were significantly lower than in groups B and C (all p < 0.05). Hsp70 and TUNEL expressions were significantly higher in groups B-D than in group A (all p < 0.001). Conclusion: The implanted SEMS-mediated RFA successfully managed stent-induced tissue hyperplasia, and repeated or periodic RFA seems to be more effective in treating in-stent restenosis in a rat gastric outlet obstruction model.

20.
Cell Death Differ ; 30(10): 2309-2321, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704840

RESUMEN

Gastrointestinal stromal tumors (GISTs) frequently show KIT mutations, accompanied by overexpression and aberrant localization of mutant KIT (MT-KIT). As previously established by multiple studies, including ours, we confirmed that MT-KIT initiates downstream signaling in the Golgi complex. Basic leucine zipper nuclear factor 1 (BLZF1) was identified as a novel MT-KIT-binding partner that tethers MT-KIT to the Golgi complex. Sustained activation of activated transcription factor 6 (ATF6), which belongs to the unfolded protein response (UPR) family, alleviates endoplasmic reticulum (ER) stress by upregulating chaperone expression, including heat shock protein 90 (HSP90), which assists in MT-KIT folding. BLZF1 knockdown and ATF6 inhibition suppressed both imatinib-sensitive and -resistant GIST in vitro. ATF6 inhibitors further showed potent antitumor effects in GIST xenografts, and the effect was enhanced with ER stress-inducing drugs. ATF6 activation was frequently observed in 67% of patients with GIST (n = 42), and was significantly associated with poorer relapse-free survival (P = 0.033). Overall, GIST bypasses ER quality control (QC) and ER stress-mediated cell death via UPR activation and uses the QC-free Golgi to initiate signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA