Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.047
Filtrar
1.
Neurospine ; 21(2): 565-574, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38955529

RESUMEN

OBJECTIVE: To evaluate C2 muscle preservation effect and the radiological and clinical outcomes after C2 recapping laminoplasty. METHODS: Fourteen consecutive patients who underwent C2 recapping laminoplasty around C1-2 level were enrolled. To evaluate muscle preservation effect, the authors conducted a morphological measurement of extensor muscles between the operated and nonoperated side. Two surgeons measured the cross-sectional area (CSA) of obliquus capitis inferior (OCI) and semispinalis cervicis (SSC) muscle before and after surgery to determine atrophy rates (ARs). Additionally, we examined range of motion (ROM), sagittal vertical axis (SVA), neck visual analogue scale (VAS), Neck Disability Index (NDI), and Japanese Orthopaedic Association (JOA) score to assess potential changes in alignment and consequent clinical outcomes following posterior cervical surgery. RESULTS: We measured the CSA of OCI and SSC before surgery, and at 6 and 12 months postoperatively. Based on these measurements, the AR of the nonoperated SSC was 0.1% ± 8.5%, the AR of the operated OCI was 2.0% ± 7.2%, and the AR of the nonoperated OCI was -0.7% ± 5.1% at the 12 months after surgery. However, the AR of the operated side's SSC was 11.2% ± 12.5%, which is a relatively higher value than other measurements. Despite the atrophic change of SSC on the operated side, there were no prominent changes observed in SVA, C0-2 ROM, and C2-7 ROM between preoperative and 12 months postoperative measurements, which were 11.8 ± 10.9 mm, 16.3° ± 5.9°, and 48.7° ± 7.7° preoperatively, and 14.1 ± 11.6 mm, 16.1° ± 7.2°, and 44.0° ± 10.3° at 12 months postoperative, respectively. Improvement was also noted in VAS, NDI, and JOA scores after surgery with JOA recovery rate of 77.3% ± 29.6%. CONCLUSION: C2 recapping laminoplasty could be a useful tool for addressing pathologies around the upper cervical spine, potentially mitigating muscle atrophy and reducing postoperative neck pain, while maintaining sagittal alignment and ROM.

2.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38966948

RESUMEN

Variants in cis-regulatory elements link the noncoding genome to human pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS), enhances noncoding variant analysis by integrating both whole-genome sequencing (WGS) and user-provided functional data. With simplified parameter settings and an efficient multiple testing correction method, CWAS-Plus conducts the CWAS workflow 50 times faster than CWAS, making it more accessible and user-friendly for researchers. Here, we used a single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type-specific enhancers and promoters. Examining autism spectrum disorder WGS data (n = 7280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease WGS data (n = 1087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale WGS data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.


Asunto(s)
Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/métodos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo/métodos , Trastorno del Espectro Autista/genética , Variación Genética , Programas Informáticos , Cromatina/genética , Cromatina/metabolismo , Genoma Humano
3.
Mol Nutr Food Res ; : e2400028, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925577

RESUMEN

SCOPE: This study investigates the impact of extracts derived from Antarctic fish species, Trematomus newnesi and Trematomus bernacchii, on the migration of human placental trophoblast JEG-3 cells, which is a crucial aspect of successful pregnancy. METHODS AND RESULTS: The extracts, obtained from the muscles of these fish, significantly enhance the migration and invasion of JEG-3 cells in in vitro wound healing, Transwell, and collagen invasion assays. These effects are accompanied by an increase in matrix metalloproteinase (MMP) 9 activity, as demonstrated by zymography. Furthermore, the extracts activated Akt and protein phosphatase 1, resulting in the dephosphorylation of ß-catenin at Ser33/37/Thr41, as confirmed by western blot analysis. Consequently, MMP9 is upregulated, while metallopeptidase inhibitor 1/3 is downregulated, as verified by western blot and qRT-PCR analyses. Finally, utilizing ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, followed by matching with the Global Natural Product Social Molecular Networking library, the study annotates the compound responsible for the observed migratory activity as taurocholic acid. Importantly, the study confirms that taurocholic acid enhances cell migration in JEG-3 cells. CONCLUSION: The results of this study emphasize the potential of Antarctic fish extracts in promoting extravillous trophoblast migration and invasion, which are critical for successful pregnancy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38881251

RESUMEN

BACKGROUND: Loss of muscle strength and endurance with aging or in various conditions negatively affects quality of life. Resistance exercise training (RET) is the most powerful means to improve muscle mass and strength, but it does not generally lead to improvements in endurance capacity. Free essential amino acids (EAAs) act as precursors and stimuli for synthesis of both mitochondrial and myofibrillar proteins that could potentially confer endurance and strength gains. Thus, we hypothesized that daily consumption of a dietary supplement of nine free EAAs with RET improves endurance in addition to the strength gains by RET. METHODS: Male C57BL6J mice (9 weeks old) were assigned to control (CON), EAA, RET (ladder climbing, 3 times a week), or combined treatment of EAA and RET (EAA + RET) groups. Physical functions focusing on strength or endurance were assessed before and after the interventions. Several analyses were performed to gain better insight into the mechanisms by which muscle function was improved. We determined cumulative rates of myofibrillar and mitochondrial protein synthesis using 2H2O labelling and mass spectrometry; assessed ex vivo contractile properties and in vitro mitochondrial function, evaluated neuromuscular junction (NMJ) stability, and assessed implicated molecular singling pathways. Furthermore, whole-body and muscle insulin sensitivity along with glucose metabolism, were evaluated using a hyperinsulinaemic-euglycaemic clamp. RESULTS: EAA + RET increased muscle mass (10%, P < 0.05) and strength (6%, P < 0.05) more than RET alone, due to an enhanced rate of integrated muscle protein synthesis (19%, P < 0.05) with concomitant activation of Akt1/mTORC1 signalling. Muscle quality (muscle strength normalized to mass) was improved by RET (i.e., RET and EAA + RET) compared with sedentary groups (10%, P < 0.05), which was associated with increased AchR cluster size and MuSK activation (P < 0.05). EAA + RET also increased endurance capacity more than RET alone (26%, P < 0.05) by increasing both mitochondrial protein synthesis (53%, P < 0.05) and DRP1 activation (P < 0.05). Maximal respiratory capacity increased (P < 0.05) through activation of the mTORC1-DRP1 signalling axis. These favourable effects were accompanied by an improvement in basal glucose metabolism (i.e., blood glucose concentrations and endogenous glucose production vs. CON, P < 0.05). CONCLUSIONS: Combined treatment with balanced free EAAs and RET may effectively promote endurance capacity as well as muscle strength through increased muscle protein synthesis, improved NMJ stability, and enhanced mitochondrial dynamics via mTORC1-DRP1 axis activation, ultimately leading to improved basal glucose metabolism.

5.
PeerJ ; 12: e17560, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912045

RESUMEN

Determining the genetic diversity and source rookeries of sea turtles collected from feeding grounds can facilitate effective conservation initiatives. To ascertain the genetic composition and source rookery, we examined a partial sequence of the mitochondrial control region (CR, 796 bp) of 40 green turtles (Chelonia mydas) collected from feeding grounds around the Korean Peninsula between 2014 and 2022. We conducted genetic and mixed-stock analyses (MSA) and identified 10 CR haplotypes previously reported in Japanese populations. In the haplotype network, six, three, and one haplotype(s) grouped with the Japan, Indo-Pacific, and Central South Pacific clades, respectively. The primary rookeries of the green turtles were two distantly remote sites, Ogasawara (OGA) and Central Ryukyu Island (CRI), approximately 1,300 km apart from each other. Comparing three parameters (season, maturity, and specific feeding ground), we noted that OGA was mainly associated with summer and the Jeju Sea, whereas CRI was with fall and the East (Japan) Sea ground. The maturity did not show a distinct pattern. Our results indicate that green turtles in the feeding grounds around the Korean Peninsula originate mainly from the Japan MU and have genetic origins in the Japan, Indo-Pacific, and Central South Pacific clades. Our results provide crucial insights into rookeries and MUs, which are the focus of conservation efforts of the Republic of Korea and potential parties to collaborate for green turtle conservation.


Asunto(s)
Haplotipos , Tortugas , Animales , Tortugas/genética , República de Corea , Variación Genética/genética , ADN Mitocondrial/genética , Migración Animal , Conducta Alimentaria , Estaciones del Año , Conservación de los Recursos Naturales
6.
JCI Insight ; 9(12)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38912584

RESUMEN

The regulated glycosylation of the proteome has widespread effects on biological processes that cancer cells can exploit. Expression of N-acetylglucosaminyltransferase V (encoded by Mgat5 or GnT-V), which catalyzes the addition of ß1,6-linked N-acetylglucosamine to form complex N-glycans, has been linked to tumor growth and metastasis across tumor types. Using a panel of murine pancreatic ductal adenocarcinoma (PDAC) clonal cell lines that recapitulate the immune heterogeneity of PDAC, we found that Mgat5 is required for tumor growth in vivo but not in vitro. Loss of Mgat5 results in tumor clearance that is dependent on T cells and dendritic cells, with NK cells playing an early role. Analysis of extrinsic cell death pathways revealed Mgat5-deficient cells have increased sensitivity to cell death mediated by the TNF superfamily, a property that was shared with other non-PDAC Mgat5-deficient cell lines. Finally, Mgat5 knockout in an immunotherapy-resistant PDAC line significantly decreased tumor growth and increased survival upon immune checkpoint blockade. These findings demonstrate a role for N-glycosylation in regulating the sensitivity of cancer cells to T cell killing through classical cell death pathways.


Asunto(s)
Carcinoma Ductal Pancreático , N-Acetilglucosaminiltransferasas , Neoplasias Pancreáticas , Animales , Glicosilación , Ratones , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Línea Celular Tumoral , Humanos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones Noqueados
7.
Acta Crystallogr A Found Adv ; 80(Pt 4): 329-338, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38934405

RESUMEN

This paper proposes a new order parameter model which satisfactorily explains complicated symmetry changes, the temperature-pressure (T-P) phase diagram and elastic anomalies observed experimentally with the improper ferroelastic phase transitions in multiferroic KMnF3 single crystal. First, it is shown that the order parameter model is transformed according to the four-dimensional reducible representation of the wavevector star channel group. Second, based on the order parameter model and the singularity theory, the sixth-order structurally stable Landau potential model is constructed. Finally, the theoretical T-P phase diagram is plotted and the elastic anomalies possible for each of the phase transitions are discussed.

8.
Mitochondrial DNA B Resour ; 9(6): 701-706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835641

RESUMEN

The striped notothen Trematomus hansoni is an Antarctic fish species belonging to the family Nototheniidae (cod icefishes) that is distributed throughout the Southern Ocean. In this study, the complete mitochondrial genome of T. hansoni was sequenced using an Illumina MiSeq platform. The circular mitochondrial genome is 19,218 bp long and contains 13 protein-coding genes, 23 tRNA genes, two rRNA genes, and one control region. Notably, there are two trnG-UCC genes and the second gene, located between trnE-UUC and trnI-GAU, has no D-arm structure. The base composition is 56.18% of A + T and 43.82% of G + C. The phylogenetic analysis supports that T. hansoni is grouped into a single clade with T. bernacchii. This study will be a valuable resource for further research on the phylogeny and evolution of the genus Trematomus.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38934035

RESUMEN

Background: Time-restricted feeding (TRF), devoid of calorie restriction, is acknowledged for promoting metabolic health and mitigating various chronic metabolic diseases. While TRF exhibits widespread benefits across multiple tissues, there is limited exploration into its impact on kidney function. In this study, our aim was to investigate the potential ameliorative effects of TRF on kidney damage in a mouse model of cisplatin-induced acute kidney injury (AKI). Methods: Cisplatin-induced AKI was induced through intraperitoneal injection of cisplatin into C57BL/6 male mice. Mice undergoing TRF were provided unrestricted access to standard chow daily but were confined to an 8-hour feeding window during the dark cycle for 2 weeks before cisplatin injection. The mice were categorized into four groups: control, TRF, cisplatin, and TRF + cisplatin. Results: The tubular damage score and serum creatinine levels were significantly lower in the TRF + cisplatin group compared to the cisplatin group. The TRF + cisplatin group exhibited reduced expression of phosphorylated nuclear factor kappa B, inflammatory cytokines, and F4/80-positive macrophages compared to the cisplatin group. Furthermore, oxidative stress markers for DNA, protein, and lipid were markedly decreased in the TRF + cisplatin group compared to the cisplatin group. TUNEL-positive tubular cells, cleaved caspase-3 expression, and the Bax/Bcl-2 ratio in the TRF + cisplatin group were lower than those in the cisplatin group. Conclusion: TRF, without calorie restriction, effectively mitigated kidney damage by suppressing inflammatory reactions, oxidative stress, and tubular apoptosis in a mouse model of cisplatin-induced AKI. TRF holds promise as a novel dietary intervention for preventing cisplatin-induced AKI.

10.
Langmuir ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913990

RESUMEN

Waste polystyrene contributes considerably to environmental pollution due to its persistent nature, prompting a widespread consensus on the urgent need for viable recycling solutions. Owing to the aromatic groups structure of polystyrene, hyper-cross-linked polymers can be synthesized through the Friedel-Crafts cross-linking reaction using Lewis acids as catalysts. In addition, hyper-cross-linked polystyrene and its carbonaceous counterparts can be used in several important applications, which helps in their efficient recycling. This review systematically explores methods for preparing multifunctional hyper-cross-linked polymers from waste polystyrene and their applications in sustainable recycling. We have comprehensively outlined various synthetic approaches for these polymers and investigated their physical and chemical properties. These multifunctional polymers not only exhibit structural flexibility but also demonstrate diversity in performance, making them suitable for various applications. Through a systematic examination of synthetic methods, we showcase the cutting-edge positions of these materials in the field of hyper-cross-linked polymers. Additionally, we provide in-depth insights into the potential applications of these hyper-cross-linked polymers in intentional recycling, highlighting their important contributions to environmental protection and sustainable development. This research provides valuable references to the fields of sustainable materials science and waste management, encouraging further exploration of innovative approaches for the utilization of discarded polystyrene.

11.
Biomed Pharmacother ; 176: 116799, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805969

RESUMEN

BACKGROUND: The overstoring of surplus calories in mature adipocytes causes obesity and abnormal metabolic activity. The anti-obesity effect of a Celosia cristata (CC) total flower extract was assessed in vitro, using 3T3-L1 pre-adipocytes and mouse adipose-derived stem cells (ADSCs), and in vivo, using high-fat diet (HFD)-treated C57BL/6 male mice. METHODS: CC extract was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs. After differentiation, lipid droplets were assessed by oil red O staining, adipogenesis and lipolytic factors were evaluated, and intracellular triglyceride and glycerol concentrations were analyzed. For in vivo experiments, histomorphological analysis, mRNA expression levels of adipogenic and lipolytic factors in adipose tissue, blood plasma analysis, metabolic profiles were investigated. RESULTS: CC treatment significantly prevented adipocyte differentiation and lipid droplet accumulation, reducing adipogenesis-related factors and increasing lipolysis-related factors. Consequently, the intracellular triacylglycerol content was diminished, whereas the glycerol concentration in the cell supernatant increased. Mice fed an HFD supplemented with the CC extract exhibited decreased HFD-induced weight gain with metabolic abnormalities such as intrahepatic lipid accumulation and adipocyte hypertrophy. Improved glucose utilization and insulin sensitivity were observed, accompanied by the amelioration of metabolic disturbances, including alterations in liver enzymes and lipid profiles, in CC-treated mice. Moreover, the CC extract helped restore the disrupted energy metabolism induced by the HFD, based on a metabolic animal monitoring system. CONCLUSION: This study suggests that CC total flower extract is a potential natural herbal supplement for the prevention and management of obesity.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Fármacos Antiobesidad , Celosia , Dieta Alta en Grasa , Flores , Ratones Endogámicos C57BL , Obesidad , Extractos Vegetales , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Masculino , Ratones , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/aislamiento & purificación , Flores/química , Adipogénesis/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Celosia/química , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lipólisis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
12.
medRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699372

RESUMEN

Variants in cis-regulatory elements link the noncoding genome to human brain pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS) employs both whole-genome sequencing and user-provided functional data to enhance noncoding variant analysis, with a faster and more efficient execution of the CWAS workflow. Here, we used single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type specific enhancers and promoters. Examining autism spectrum disorder whole-genome sequencing data (n = 7,280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease whole-genome sequencing data (n = 1,087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale whole-genome sequencing data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.

13.
Psychiatry Clin Neurosci ; 78(7): 405-415, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751214

RESUMEN

AIM: Short tandem repeats (STRs) are repetitive DNA sequences and highly mutable in various human disorders. While the involvement of STRs in various genetic disorders has been extensively studied, their role in autism spectrum disorder (ASD) remains largely unexplored. In this study, we aimed to investigate genetic association of STR expansions with ASD using whole genome sequencing (WGS) and identify risk loci associated with ASD phenotypes. METHODS: We analyzed WGS data of 634 ASD families and performed genome-wide evaluation for 12,929 STR loci. We found rare STR expansions that exceeded normal repeat lengths in autism cases compared to unaffected controls. By integrating single cell RNA and ATAC sequencing datasets of human postmortem brains, we prioritized STR loci in genes specifically expressed in cortical development stages. A deep learning method was used to predict functionality of ASD-associated STR loci. RESULTS: In ASD cases, rare STR expansions predominantly occurred in early cortical layer-specific genes involved in neurodevelopment, highlighting the cellular specificity of STR-associated genes in ASD risk. Leveraging deep learning prediction models, we demonstrated that these STR expansions disrupted the regulatory activity of enhancers and promoters, suggesting a potential mechanism through which they contribute to ASD pathogenesis. We found that individuals with ASD-associated STR expansions exhibited more severe ASD phenotypes and diminished adaptability compared to non-carriers. CONCLUSION: Short tandem repeat expansions in cortical layer-specific genes are associated with ASD and could potentially be a risk genetic factor for ASD. Our study is the first to show evidence of STR expansion associated with ASD in an under-investigated population.


Asunto(s)
Trastorno del Espectro Autista , Repeticiones de Microsatélite , Humanos , Trastorno del Espectro Autista/genética , Repeticiones de Microsatélite/genética , Masculino , Femenino , Corteza Cerebral/patología , Fenotipo , Niño , Secuenciación Completa del Genoma , Aprendizaje Profundo , Índice de Severidad de la Enfermedad , Adulto , Expansión de las Repeticiones de ADN/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-38738277

RESUMEN

Background: Obesity is a major worldwide health problem and can be related to cellular senescence. Along with the rise in obesity, the comorbidity of renal ischemia-reperfusion (IR) injury is increasing. Whether obesity accelerates the severity of IR injury and whether senescence contributes to these conditions remain unclear. We studied the degree of injury and cellular senescence in the IR kidneys and perirenal adipose tissues of high-fat-diet-induced obese mice. Methods: C57BL/6 mice fed standard chow or a high-fat diet for 16 weeks were randomized to renal IR or sham group (n = 6-10 each). Renal IR was performed by unilateral clamping of the right renal pedicle for 30 minutes. Six weeks after surgery, renal function, perirenal fat/renal senescence, and histology were evaluated ex vivo. Results: Obese mice showed more renal tubular damage and fibrosis in IR injury than control mice, even though the degree of ischemic insult was comparable. Renal expression of senescence and its secretory phenotype was upregulated in either IR injury or with a high-fat diet and was further increased in the IR kidneys of obese mice. Fat senescence and the expression of tumor necrosis factor alpha were also increased, especially in the perirenal depot of the IR kidneys, with a high-fat diet. Conclusion: A high-fat diet aggravates IR injury in murine kidneys, which is associated, at least in part, with perirenal fat senescence and inflammation. These observations support the exploration of therapeutic targets of the adipo-renal axis in injured obese kidneys.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38738272

RESUMEN

Background: Sarcopenia upon admission to the intensive care unit (ICU) consistently correlates with adverse outcomes, including heightened mortality, in critically ill patients. This study aims to investigate the independent association of sarcopenia with both mortality and recovery from dialysis in critically ill patients with sepsis-induced acute kidney injury (SIAKI) undergoing continuous renal replacement therapy (CRRT). Methods: This retrospective study included 618 patients with SIAKI who underwent CRRT in our ICU. All patients had abdominal computed tomography (CT) scans within 3 days preceding ICU admission. The cross-sectional area of skeletal muscles at the third lumbar vertebra was quantified, and the skeletal muscle index (SMI), a normalized measure of skeletal muscle mass, was computed. Using Korean-specific SMI cutoffs, patients were categorized into sarcopenic and non-sarcopenic groups. Results: Among the 618 patients, 301 expired within 28 days of ICU admission. Multivariable Cox regression analysis revealed that sarcopenia independently predicted 28-day mortality. Among survivors, sarcopenia was independently associated with recovery from dialysis within 28 days after ICU admission. Kaplan-Meier analysis illustrated that sarcopenic patients had a higher mortality rate and a lower rate of recovery from dialysis within 28 days after ICU admission compared to non-sarcopenic patients. Conclusion: This study underscores the independent association of sarcopenia, assessed via CT-derived SMI, with both mortality and recovery from dialysis in critically ill patients with SIAKI undergoing CRRT. The inclusion of sarcopenia assessment could serve as a valuable tool for physicians in effectively stratifying the risk of adverse outcomes in these patients.

16.
Nat Metab ; 6(5): 847-860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38811804

RESUMEN

Adipose tissues serve as an energy reservoir and endocrine organ, yet the mechanisms that coordinate these functions remain elusive. Here, we show that the transcriptional coregulators, YAP and TAZ, uncouple fat mass from leptin levels and regulate adipocyte plasticity to maintain metabolic homeostasis. Activating YAP/TAZ signalling in adipocytes by deletion of the upstream regulators Lats1 and Lats2 results in a profound reduction in fat mass by converting mature adipocytes into delipidated progenitor-like cells, but does not cause lipodystrophy-related metabolic dysfunction, due to a paradoxical increase in circulating leptin levels. Mechanistically, we demonstrate that YAP/TAZ-TEAD signalling upregulates leptin expression by directly binding to an upstream enhancer site of the leptin gene. We further show that YAP/TAZ activity is associated with, and functionally required for, leptin regulation during fasting and refeeding. These results suggest that adipocyte Hippo-YAP/TAZ signalling constitutes a nexus for coordinating adipose tissue lipid storage capacity and systemic energy balance through the regulation of adipocyte plasticity and leptin gene transcription.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Adipocitos , Tejido Adiposo , Metabolismo Energético , Vía de Señalización Hippo , Leptina , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Leptina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Señalizadoras YAP/metabolismo , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Transactivadores/metabolismo , Transactivadores/genética
17.
Cancer Res ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695869

RESUMEN

Oncogenesis and progression of pancreatic ductal adenocarcinoma (PDAC) is driven by complex interactions between the neoplastic component and the tumor microenvironment (TME), which includes immune, stromal, and parenchymal cells. In particular, most PDACs are characterized by a hypovascular and hypoxic environment that alters tumor cell behavior and limits the efficacy of chemotherapy and immunotherapy. Characterization of the spatial features of the vascular niche could advance our understanding of inter- and intra-tumoral heterogeneity in PDAC. Here, we investigated the vascular microenvironment of PDAC by applying imaging mass cytometry using a 26-antibody panel on 35 regions of interest (ROIs) across 9 patients, capturing over 140,000 single cells. The approach distinguished major cell types, including multiple populations of lymphoid and myeloid cells, endocrine cells, ductal cells, stromal cells, and endothelial cells. Evaluation of cellular neighborhoods identified 10 distinct spatial domains, including multiple immune and tumor-enriched environments as well as the vascular niche. Focused analysis revealed differential interactions between immune populations and the vasculature and identified distinct spatial domains wherein tumor cell proliferation occurs. Importantly, the vascular niche was closely associated with a population of CD44-expressing macrophages enriched for a pro-angiogenic gene signature. Together, this study provides insights into the spatial heterogeneity of PDAC and suggests a role for CD44-expressing macrophages in shaping the vascular niche.

18.
PLoS One ; 19(5): e0302849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722953

RESUMEN

Left ventricular hypertrophy (LVH) and left ventricular diastolic dysfunction (LVDD) are highly prevalent predictors of cardiovascular disease in individuals with chronic kidney disease (CKD). Vitamin D, particularly 25-hydroxyvitamin D [25(OH)D], deficiency has been reported to be associated with cardiac structure and function in CKD patients. In the current study, we investigated the association between 1,25-dihydroxyvitamin D [1,25(OH)2D], the active form of 25(OH)D, and LVH/LVDD in CKD patients. We enrolled 513 non-dialysis CKD patients. The presence of LVH and LVDD was determined using transthoracic echocardiography. In multivariable analysis, serum 1,25(OH)2D levels, but not serum 25(OH)D, were independently associated with LVH [odds ratio (OR): 0.90, 95% confidential interval (CI): 0.88-0.93, P < 0.001]. Additionally, age, systolic blood pressure, and intact parathyroid hormone levels were independently associated with LVH. Similarly, multivariable analysis demonstrated that serum 1,25(OH)2D levels, but not 25(OH)D levels, were independently associated with LVDD (OR: 0.88, 95% CI: 0.86-0.91, P < 0.001) with systolic blood pressure showing independent association with LVDD. The optimal cut-off values for serum 1,25(OH)2D levels for identifying LVH and LVDD were determined as ≤ 12.7 pg/dl and ≤ 18.1 pg/dl, respectively. Our findings suggest that serum 1,25(OH)2D levels have independent association with LVH and LVDD in CKD patients, underscoring their potential as biomarkers for these conditions in this patient population.


Asunto(s)
Hipertrofia Ventricular Izquierda , Insuficiencia Renal Crónica , Disfunción Ventricular Izquierda , Vitamina D , Humanos , Hipertrofia Ventricular Izquierda/sangre , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Femenino , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/fisiopatología , Persona de Mediana Edad , Vitamina D/análogos & derivados , Vitamina D/sangre , Disfunción Ventricular Izquierda/sangre , Disfunción Ventricular Izquierda/fisiopatología , Anciano , Ecocardiografía , Diástole
19.
PLoS One ; 19(5): e0302628, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38723000

RESUMEN

Blood vessels permit the selective passage of molecules and immune cells between tissues and circulation. Uncontrolled inflammatory responses from an infection can increase vascular permeability and edema, which can occasionally lead to fatal organ failure. We identified mexenone as a vascular permeability blocker by testing 2,910 compounds in the Clinically Applied Compound Library using the lipopolysaccharide (LPS)-induced vascular permeability assay. Mexenone suppressed the LPS-induced downregulation of junctional proteins and phosphorylation of VE-cadherin in Bovine Aortic Endothelial Cells (BAECs). The injection of mexenone 1 hr before LPS administration completely blocked LPS-induced lung vascular permeability and acute lung injury in mice after 18hr. Our results suggest that mexenone-induced endothelial cell (EC) barrier stabilization could be effective in treating sepsis patients.


Asunto(s)
Células Endoteliales , Lipopolisacáridos , Sepsis , Animales , Sepsis/tratamiento farmacológico , Sepsis/inducido químicamente , Sepsis/metabolismo , Ratones , Bovinos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/prevención & control , Masculino , Cadherinas/metabolismo , Ratones Endogámicos C57BL , Antígenos CD/metabolismo
20.
Diabetes ; 73(7): 1084-1098, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656552

RESUMEN

Forkhead box O1 (FOXO1) regulates muscle growth, but the metabolic role of FOXO1 in skeletal muscle and its mechanisms remain unclear. To explore the metabolic role of FOXO1 in skeletal muscle, we generated skeletal muscle-specific Foxo1 inducible knockout (mFOXO1 iKO) mice and fed them a high-fat diet to induce obesity. We measured insulin sensitivity, fatty acid oxidation, mitochondrial function, and exercise capacity in obese mFOXO1 iKO mice and assessed the correlation between FOXO1 and mitochondria-related protein in the skeletal muscle of patients with diabetes. Obese mFOXO1 iKO mice exhibited improved mitochondrial respiratory capacity, which was followed by attenuated insulin resistance, enhanced fatty acid oxidation, and improved skeletal muscle exercise capacity. Transcriptional inhibition of FOXO1 in peroxisome proliferator-activated receptor δ (PPARδ) expression was confirmed in skeletal muscle, and deletion of PPARδ abolished the beneficial effects of FOXO1 deficiency. FOXO1 protein levels were higher in the skeletal muscle of patients with diabetes and negatively correlated with PPARδ and electron transport chain protein levels. These findings highlight FOXO1 as a new repressor in PPARδ gene expression in skeletal muscle and suggest that FOXO1 links insulin resistance and mitochondrial dysfunction in skeletal muscle via PPARδ.


Asunto(s)
Proteína Forkhead Box O1 , Resistencia a la Insulina , Ratones Noqueados , Músculo Esquelético , PPAR delta , Animales , Resistencia a la Insulina/fisiología , Resistencia a la Insulina/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , PPAR delta/genética , PPAR delta/metabolismo , Ratones , Músculo Esquelético/metabolismo , Humanos , Masculino , Mitocondrias Musculares/metabolismo , Dieta Alta en Grasa , Obesidad/metabolismo , Obesidad/genética , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...