Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Adv Mater ; : e2314274, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647521

RESUMEN

A gate stack that facilitates a high-quality interface and tight electrostatic control is crucial for realizing high-performance and low-power field-effect transistors (FETs). However, when constructing conventional metal-oxide-semiconductor structures with two-dimensional (2D) transition metal dichalcogenide channels, achieving these requirements becomes challenging due to inherent difficulties in obtaining high-quality gate dielectrics through native oxidation or film deposition. Here, a gate-dielectric-less device architecture of van der Waals Schottky gated metal-semiconductor FETs (vdW-SG MESFETs) using a molybdenum disulfide (MoS2) channel and surface-oxidized metal gates such as nickel and copper is reported. Benefiting from the strong SG coupling, these MESFETs operate at remarkably low gate voltages, <0.5 V. Notably, they also exhibit Boltzmann-limited switching behavior featured by a subthreshold swing of ≈60 mV dec-1 and negligible hysteresis. These ideal FET characteristics are attributed to the formation of a Fermi-level (EF) pinning-free gate stack at the Schottky-Mott limit. Furthermore, authors experimentally and theoretically confirm that EF depinning can be achieved by suppressing both metal-induced and disorder-induced gap states at the interface between the monolithic-oxide-gapped metal gate and the MoS2 channel. This work paves a new route for designing high-performance and energy-efficient 2D electronics.

2.
Pharm Res ; 40(12): 3059-3071, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37914841

RESUMEN

PURPOSE: For successful delivery of a solid vaccine formulation into the skin using microneedles, the solubility of an adjuvant should be considered because the decrease in the dissolution rate by the addition of adjuvant decreases the delivery efficiency of the vaccine. METHODS: In this study, cholera toxin A subunit 1 (CTA1) was examined as an adjuvant to Hepatitis B vaccine (HBV) microneedles because of its good water solubility, improved safety, and positive effect as shown in intramuscular administration of a liquid vaccine. RESULTS: All solid formulations with CTA 1 dissolved in in vivo mouse skin within 30 min, and they were successfully delivered into the skin. In experiments with mice, the addition of CTA1 led to improved IgG immune response compared to the use of an aluminum hydroxide-based formulation and intramuscular administration of HBV. In addition, CTA1 induced CD8 + T cell response as much as in which the aluminum hydroxide-based formulation induced. CONCLUSIONS: CTA1 is an adjuvant that satisfies both the delivery efficiency and the immunological characteristics required for vaccine microneedles. CTA1 will be used as a potential adjuvant through vaccine microneedles.


Asunto(s)
Toxina del Cólera , Vacunas contra Hepatitis B , Ratones , Animales , Preparaciones Farmacéuticas , Hidróxido de Aluminio , Adyuvantes Inmunológicos
3.
Int J Biol Macromol ; 253(Pt 7): 127472, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858649

RESUMEN

Acetylated lignin (AL) can improve compatibility with commercial plastic polymers compared to existing lignin and can be used as an effective additive for eco-friendly biocomposites. For this reason, AL can be effectively incorporated into polylactic acid (PLA)-based biocomposites, but its biodegradation properties have not been investigated. In this study, biodegradation experiments were performed under mesophilic and thermophilic conditions to determine the effect of AL addition on the biodegradation characteristics of PLA-based biocomposites. As a result, the PLA-based biocomposite showed a faster biodegradation rate in a thermophilic composting environment, which is higher than the glass transition temperature of PLA, compared to a mesophilic environment. 16S rDNA sequencing results showed that differences in microbial communities depending on mesophilic and thermophilic environments strongly affected the biodegradation rate of lignin/PLA biocomposites. Importantly, the addition of AL can effectively delay the thermophilic biodegradation of PLA biocomposites. As a result of tracking the changes in physicochemical properties according to the biodegradation period in a thermophilic composting environment, the main biodegradation mechanism of AL/PLA biocomposite hydrolysis. It proceeded with cleavage of the PLA molecular chain, preferential biodegradation of the amorphous region, and additional biodegradation of the crystalline region. Above all, adding AL can be proposed as an effective additive because it can minimize the decline in the mechanical properties of PLA and delay the biodegradation rate more effectively compared to existing kraft lignin (KL).


Asunto(s)
Compostaje , Lignina , Lignina/química , Poliésteres/química , Temperatura
4.
Int J Biol Macromol ; 253(Pt 6): 127293, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37806424

RESUMEN

In this study, the intrinsic brittleness of poly(lactic acid) (PLA) was overcome by chemical modification using ethyl acetate-extracted lignin (EL) via cationic ring-opening polymerization (CROP). The CROP was conducted to promote homopolymerization under starvation of the initiator (oxyrane). This method resulted in the formation of lignin-based polyether (LPE). LPE exhibited enhanced interfacial compatibility with nonpolar and hydrophobic PLA owing to the fewer hydrophilic hydroxyl groups and a long polyether chain. In addition, because of the UV-protecting and radical-scavenging abilities of lignin, LPE/PLA exhibited multifunctional properties, resulting in improved chemical properties compared with the neat PLA film. Notably, one of the LPE/PLA films (EL_MCF) exhibited excellent elongation at break of 297.7 % and toughness of 39.92 MJ/m3. Furthermore, the EL_MCF film showed superior UV-protective properties of 99.52 % in UVA and 88.95 % in UVB ranges, both significantly higher than those of the PLA film, without sacrificing significant transparency in 515 nm. In addition, the radical scavenging activity improved after adding LPE to the PLA film. These results suggest that LPEs can be used as plasticizing additives in LPE/PLA composite films, offering improved physicochemical properties.


Asunto(s)
Lignina , Poliésteres , Lignina/química , Polimerizacion , Poliésteres/química
5.
Int J Biol Macromol ; 245: 125545, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37355075

RESUMEN

Ecofriendly multifunctional films with only biomass-based components have gathered significant interest from researchers as next-generation materials. Following this trend, a TEMPO-oxidized cellulose nanofibril (TOCNF) film containing hydrophilic lignin (CL) was fabricated. To produce the lignin, peracetic acid oxidation was carried out, leading to the introduction of carboxyl groups into the lignin structure. By adding hydrophilic lignin, various characteristics (e.g., surface smoothness, UV protection, antimicrobial activity, and barrier properties) of the TOCNF film were enhanced. In particular, the shrinkage of CNF was successfully prevented by the addition of CL, which is attributed to the lower surface roughness (Ra) from 18.93 nm to 4.99 nm. As a result, the smooth surface of the TOCNF/CL film was shown compared to neat TOCNF film and TOCNF/Kraft lignin composite film. In addition, the TOCNF/CL film showed a superior UV blocking ability of 99.9 % with high transparency of 78.4 %, which is higher than that of CNF-lignin composite films in other research. Also, water vapor transmission rate was reduced after adding CL to TOCNF film. Consequently, the developed TOCNF/CL film can be potentially utilized in various applications, such as food packaging.


Asunto(s)
Celulosa Oxidada , Nanofibras , Celulosa/química , Lignina/química , Nanofibras/química , Vapor
6.
Int J Biol Macromol ; 240: 124330, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023881

RESUMEN

In this study, a chemically modified lignin additive was successfully prepared to improve the physicochemical properties of biodegradable polycaprolactone (PCL)-based nanofibers. The molecular weight and surface functional group characteristics of lignin were effectively controlled through a solvent fractionation process using ethanol. Then, PCL-g-lignin was successfully synthesized by using ethanol-fractionated lignin as a platform for the PCL grafting process. Finally, PCL/PCL-g-lignin composite nanofibers were simply prepared by adding PCL-g-lignin to the PCL doping solution and performing a solution blow spinning process. The addition of PCL-g-lignin could dramatically improve the physical and chemical properties of PCL nanofibers, and in particular, the tensile strength (0.28 MPa) increased by approximately 280 % compared to the conventional PCL. In addition, the lignin moiety present in PCL-g-lignin was able to impart UV blocking properties to PCL nanofibers, and as a result, it was possible to effectively suppress the photolysis phenomenon that occurred rapidly in existing PCL nanofibers. Therefore, PCL-g-lignin may be widely used not only as a reinforcing agent of existing biodegradable nanofibers but also as a functional additive for UV protection.


Asunto(s)
Lignina , Nanofibras , Lignina/química , Nanofibras/química , Poliésteres/química , Resistencia a la Tracción , Fotólisis
7.
Adv Mater ; 35(24): e2211525, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36930856

RESUMEN

Heterosynaptic neuromodulation is a key enabler for energy-efficient and high-level biological neural processing. However, such manifold synaptic modulation cannot be emulated using conventional memristors and synaptic transistors. Thus, reported herein is a three-terminal heterosynaptic memtransistor using an intentional-defect-generated molybdenum disulfide channel. Particularly, the defect-mediated space-charge-limited conduction in the ultrathin channel results in memristive switching characteristics between the source and drain terminals, which are further modulated using a gate terminal according to the gate-tuned filling of trap states. The device acts as an artificial synapse controlled by sub-femtojoule impulses from both the source and gate terminals, consuming lower energy than its biological counterpart. In particular, electrostatic gate modulation, corresponding to biological neuromodulation, additionally regulates the dynamic range and tuning rate of the synaptic weight, independent of the programming (source) impulses. Notably, this heterosynaptic modulation not only improves the learning accuracy and efficiency but also reduces energy consumption in the pattern recognition. Thus, the study presents a new route leading toward the realization of highly networked and energy-efficient neuromorphic electronics.


Asunto(s)
Electrónica , Molibdeno , Fenómenos Físicos , Electricidad Estática , Sinapsis
8.
Nat Commun ; 14(1): 685, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755020

RESUMEN

Constructing a mono-atom step-level ultra-flat material surface is challenging, especially for thin films, because it is prohibitively difficult for trillions of clusters to coherently merge. Even though a rough metal surface, as well as the scattering of carriers at grain boundaries, limits electron transport and obscures their intrinsic properties, the importance of the flat surface has not been emphasised sufficiently. In this study, we describe in detail the initial growth of copper thin films required for mono-atom step-level flat surfaces (MSFSs). Deposition using atomic sputtering epitaxy leads to the coherent merging of trillions of islands into a coplanar layer, eventually forming an MSFS, for which the key factor is suggested to be the individual deposition of single atoms. Theoretical calculations support that single sputtered atoms ensure the formation of highly aligned nanodroplets and help them to merge into a coplanar layer. The realisation of the ultra-flat surfaces is expected to greatly assist efforts to improve quantum behaviour by increasing the coherency of electrons.

9.
Int J Biol Macromol ; 226: 279-290, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36495995

RESUMEN

Lignin has different structural characteristics depending on the extraction conditions. In this study, three types of ethanol organosolv lignin (EOL) were produced under different extraction conditions involving the reaction temperature (140, 160, 180 °C), sulfuric acid concentration (0.5, 1, 1.5 %), and ethanol concentration (40, 60, 80 %) to compare the difference in properties when mixed with polylactic acid (PLA) matrix after atom transfer radical polymerization (ATRP). ATRP of EOL was conducted to improve its compatibility with PLA using methyl methacrylate (MMA) as a monomer. The molecular weight of each EOL increased significantly, and the glass transition temperature (Tg) decreased from approximately 150 to 110 °C. The EOL-g-PMMA copolymer exhibited a melting point (Tm), whereas EOL did not, implying that the thermoplasticity increased. The EOL-g-PMMA/PLA blend and film were prepared with 10 % of the copolymer in the PLA matrix. The tensile strength and strain of the blend were higher than those of unmodified organosolv lignin as the compatibility increased, and the UV transmittance was lower than that of neat PLA because of the UV protecting properties of EOL moiety.


Asunto(s)
Lignina , Poliésteres , Lignina/química , Polimerizacion , Poliésteres/química , Polímeros/química , Etanol
10.
Nat Commun ; 13(1): 5616, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153312

RESUMEN

The evaporation and crystal growth rates of ZnO are highly anisotropic and are fastest on the Zn-terminated ZnO (0001) polar surface. Herein, we study this behavior by direct atomic-scale observations and simulations of the dynamic processes of the ZnO (0001) polar surface during evaporation. The evaporation of the (0001) polar surface is accelerated dramatically at around 300 °C with the spontaneous formation of a few nanometer-thick quasi-liquid layer. This structurally disordered and chemically Zn-deficient quasi-liquid is derived from the formation and inward diffusion of Zn vacancies that stabilize the (0001) polar surface. The quasi-liquid controls the dissociative evaporation of ZnO with establishing steady state reactions with Zn and O2 vapors and the underlying ZnO crystal; while the quasi-liquid catalyzes the disordering of ZnO lattice by injecting Zn vacancies, it facilitates the desorption of O2 molecules. This study reveals that the polarity-driven surface disorder is the key structural feature driving the fast anisotropic evaporation and crystal growth of ZnO nanostructures along the [0001] direction.

11.
Nature ; 610(7930): 61-66, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914677

RESUMEN

Digital logic circuits are based on complementary pairs of n- and p-type field effect transistors (FETs) via complementary metal oxide semiconductor technology. In three-dimensional (3D) or bulk semiconductors, substitutional doping of acceptor or donor impurities is used to achieve p- and n-type FETs. However, the controllable p-type doping of low-dimensional semiconductors such as two-dimensional (2D) transition-metal dichalcogenides (TMDs) has proved to be challenging. Although it is possible to achieve high-quality, low-resistance n-type van der Waals (vdW) contacts on 2D TMDs1-5, obtaining p-type devices by evaporating high-work-function metals onto 2D TMDs has not been realized so far. Here we report high-performance p-type devices on single- and few-layered molybdenum disulfide and tungsten diselenide based on industry-compatible electron beam evaporation of high-work-function metals such as palladium and platinum. Using atomic resolution imaging and spectroscopy, we demonstrate near-ideal vdW interfaces without chemical interactions between the 2D TMDs and 3D metals. Electronic transport measurements reveal that the Fermi level is unpinned and p-type FETs based on vdW contacts exhibit low contact resistance of 3.3 kΩ µm, high mobility values of approximately 190 cm2 V-1 s-1 at room temperature, saturation currents in excess of 10-5 A µm-1 and an on/off ratio of 107. We also demonstrate an ultra-thin photovoltaic cell based on n- and p-type vdW contacts with an open circuit voltage of 0.6 V and a power conversion efficiency of 0.82%.

12.
Nature ; 603(7901): 434-438, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296844

RESUMEN

Oxidation can deteriorate the properties of copper that are critical for its use, particularly in the semiconductor industry and electro-optics applications1-7. This has prompted numerous studies exploring copper oxidation and possible passivation strategies8. In situ observations have, for example, shown that oxidation involves stepped surfaces: Cu2O growth occurs on flat surfaces as a result of Cu adatoms detaching from steps and diffusing across terraces9-11. But even though this mechanism explains why single-crystalline copper is more resistant to oxidation than polycrystalline copper, the fact that flat copper surfaces can be free of oxidation has not been explored further. Here we report the fabrication of copper thin films that are semi-permanently oxidation resistant because they consist of flat surfaces with only occasional mono-atomic steps. First-principles calculations confirm that mono-atomic step edges are as impervious to oxygen as flat surfaces and that surface adsorption of O atoms is suppressed once an oxygen face-centred cubic (fcc) surface site coverage of 50% has been reached. These combined effects explain the exceptional oxidation resistance of ultraflat Cu surfaces.

13.
Carbohydr Polym ; 282: 119122, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35123761

RESUMEN

Although nanocellulose is an eco-friendly, high-performance raw material provided by nature, the agglomeration of nanocellulose that occurs during the drying process is the biggest obstacle to its advanced materialization and commercialization. In this study, a facile and simple nanocellulose drying system was designed using lignin, which is self-assembled together with cellulose in natural wood, as an eco-friendly additive. The addition of lignin not only minimized aggregation during the drying and dehydration process of nanocellulose but also ensured excellent redispersion kinetics and stability. In addition, the added lignin could be removed through a simple washing process. Through FTIR, XRD, TGA, tensile and swelling tests, it was confirmed that the addition of lignin enabled the reversible restitution of the nanocellulose physicochemical properties to the level of pristine never-dried nanocellulose in drying, redispersion, and polymer processing processes.

14.
Yonsei Med J ; 63(2): 173-178, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35083903

RESUMEN

PURPOSE: An adequate minimal surgical margin for partial nephrectomy (PN) has not yet been conclusively established. Therefore, we aimed to compare PN recurrence rates according to surgical margin status and to establish an adequate minimal surgical margin. MATERIALS AND METHODS: We retrospectively studied patients with clinically localized renal cell carcinoma who underwent PN between 2005 and 2014. Surgical margin width (SMW) was assessed for all surgical tissues and divided into three groups: SMW <1 mm, SMW ≥1 mm, and positive surgical margin (PSM). The data were analyzed using the Kaplan-Meier method with log-rank tests and multivariate Cox regression models. RESULTS: Of 748 patients (median age, 55 years; interquartile range, 46-64 years; 220 female), 704 (94.2%) and 44 (5.8%) patients had negative and PSMs, respectively. Recurrence-free survival was significantly lower in patients with PSMs (p<0.001) and was not significantly different between SMW ≥1 mm and <1 mm groups (p=0.604). PSM was a significant predictor of recurrence (hazard ratio: 8.03, 95% confidence interval: 2.74-23.56, p<0.001), in contrast to SMW <1 mm (p=0.680). CONCLUSION: A PSM after PN significantly increases the risk of recurrence. We discovered that even a submillimeter safety surgical margin may be enough to prevent recurrence. To maximize normal renal parenchyma preservation and to avoid cancer recurrence in renal parenchymal tumor patients, PN may be a safe treatment, except for those with a PSM in the final pathology.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/cirugía , Femenino , Humanos , Neoplasias Renales/cirugía , Márgenes de Escisión , Persona de Mediana Edad , Recurrencia Local de Neoplasia/prevención & control , Recurrencia Local de Neoplasia/cirugía , Nefrectomía , Estudios Retrospectivos , Resultado del Tratamiento
15.
Drug Deliv Transl Res ; 12(2): 415-425, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34494223

RESUMEN

Microneedles (MNs), one of the transdermal drug delivery systems, have received extensive interest as an alternative to parenteral or parenteral administrations. For the successful drug delivery of coated MNs, the coated drug or chemical of MNs should be dissolved by skin's interstitial fluid and completely released from the MNs. Thus, the rapid disintegration of the drug from MNs plays a crucial role in ideal drug delivery of MNs. In this study, we developed the rapid disintegration coating formulation to reduce the application time of MN. The rapid disintegration MN was developed using polymers (PVA or HPMC), glycerol, croscarmellose sodium, tween 80, and Brij, as thickener, plasticizer, disintegrating agent, and surfactants, respectively. HPMC MN showed the burst release and rapid disintegration. Moreover, the drug from HPMC MN was successfully delivered into porcine skin within 1 min. In toxicological evaluation, the HPMC MN did not alter the liver and kidney function. Besides, HPMC MN did not induce the acute inflammation and change of skin structure after the application on rat skin. Thus, the coating formulation in this study could be one of the options for the development of safe and rapid disintegration MN.


Asunto(s)
Sistemas de Liberación de Medicamentos , Agujas , Administración Cutánea , Animales , Microinyecciones , Preparaciones Farmacéuticas , Ratas , Piel , Porcinos
16.
Sci Rep ; 11(1): 16979, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417504

RESUMEN

The aim of this study is to establish prediction models for the non-destructive evaluation of the carbonization characteristics of lignin-derived hydrochars as a carbon material in real time. Hydrochars are produced via the hydrothermal carbonization of kraft lignins for 1-5 h in the temperature range of 175-250 °C, and as the reaction severity of hydrothermal carbonization increases, the hydrochar is converted to a more carbon-intensive structure. Principal component analysis using near-infrared spectra suggests that the spectral regions at 2132 and 2267 nm assigned to lignins and 1449 nm assigned to phenolic groups of lignins are informative bands that indicate the carbonization degree. Partial least squares regression models trained with near-infrared spectra accurately predicts the carbon content, oxygen/carbon, and hydrogen/carbon ratios with high coefficients of determination and low root mean square errors. The established models demonstrate better prediction than ordinary least squares regression models.

17.
Sci Adv ; 7(13)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33771864

RESUMEN

Quantum wells (QWs), enabling effective exciton confinement and strong light-matter interaction, form an essential building block for quantum optoelectronics. For two-dimensional (2D) semiconductors, however, constructing the QWs is still challenging because suitable materials and fabrication techniques are lacking for bandgap engineering and indirect bandgap transitions occur at the multilayer. Here, we demonstrate an unexplored approach to fabricate atomic-layer-confined multiple QWs (MQWs) via monolithic bandgap engineering of transition metal dichalcogenides and van der Waals stacking. The WOX/WSe2 hetero-bilayer formed by monolithic oxidation of the WSe2 bilayer exhibited the type I band alignment, facilitating as a building block for MQWs. A superlinear enhancement of photoluminescence with increasing the number of QWs was achieved. Furthermore, quantum-confined radiative recombination in MQWs was verified by a large exciton binding energy of 193 meV and a short exciton lifetime of 170 ps. This work paves the way toward monolithic integration of band-engineered heterostructures for 2D quantum optoelectronics.

18.
Foods ; 10(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672511

RESUMEN

Eucalyptus pellita is known as attractive biomass, and it has been utilized for eucalyptus oil, furniture, and pulp and paper production that causes a significant amount of byproducts. Liquid hot water treatment depending on combined severity factor (CSF) was subjected to isolate hemicellulose fraction from E. pellita and to produce xylooligosaccharides (XOS). The xylan extraction ratio based on the initial xylan content of the feedstock was maximized up to 77.6% at 170 °C for 50 min condition (CSF: 1.0), which had accounted for XOS purity of 76.5% based on the total sugar content of the liquid hydrolysate. In this condition, the sum of xylobiose, xylotriose, and xylotetraose which has a low degree of polymerization (DP) of 2 to 4 was determined as 80.6% of the total XOS. The highest XOS production score established using parameters including the xylan extraction ratio, XOS purity, and low DP XOS ratio was 5.7 at CSF 1.0 condition. XOS production score evaluated using the CSF is expected to be used as a productivity indicator of XOS in the industry (R-squared value: 0.92).

19.
Adv Mater ; 33(13): e2007186, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33634556

RESUMEN

A robust Cu conductor on a glass substrate for thin-film µLEDs using the flash-induced chemical/physical interlocking between Cu and glass is reported. During millisecond light irradiation, CuO nanoparticles (NPs) on the display substrate are transformed into a conductive Cu film by reduction and sintering. At the same time, intensive heating at the boundary of CuO NPs and glass chemically induces the formation of an ultrathin Cu2 O interlayer within the Cu/glass interface for strong adhesion. Cu nanointerlocking occurs by transient glass softening and interface fluctuation to increase the contact area. Owing to these flash-induced interfacial interactions, the flash-activated Cu electrode exhibits an adhesion energy of 10 J m-2 , which is five times higher than that of vacuum-deposited Cu. An AlGaInP thin-film vertical µLED (VLED) forms an electrical interconnection with the flash-induced Cu electrode via an ACF bonding process, resulting in a high optical power density of 41 mW mm-2 . The Cu conductor enables reliable VLED operation regardless of harsh thermal stress and moisture infiltration under a high-temperature storage test, temperature humidity test, and thermal shock test. 50 × 50 VLED arrays transferred onto the flash-induced robust Cu electrode show high illumination yield and uniform distribution of forward voltage, peak wavelength, and device temperature.

20.
ACS Omega ; 6(2): 1534-1546, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33490813

RESUMEN

In general, lignin exhibits unpredictable and nonuniform thermal properties due to the structural variations caused by the extraction processes. Therefore, a systematic understanding of the correlation between the extraction conditions, structural characteristics, and properties is indispensable for the commercial utilization of lignin. In this study, the effect of extraction conditions on the structural characteristics of ethanol organosolv lignin (EOL) was investigated by response surface methodology. The structural characteristics of EOL (molecular weight, hydroxyl content, and intramolecular coupling structure) were significantly affected by the extraction conditions (temperature, sulfuric acid concentration, and ethanol concentration). In addition, the correlation between the structural characteristics and thermal properties of the extracted EOLs was estimated. The relevant correlations between the structural characteristics and thermal properties were determined. In particular, EOLs that had a low molecular weight, high phenolic hydroxyl content, and low aryl-ether linkage content exhibited prominent thermal properties in terms of their initial decomposition rate and a high glass transition temperature, T g. Correspondingly, EOL-PLA blends prepared using three EOL types exhibited improved thermal properties (starting point of thermal decomposition and maximum decomposition temperature) compared to neat PLA and had thermal decomposition behaviors coincident with the thermal properties of the constituent EOLs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA