Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
bioRxiv ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895474

RESUMEN

Mesenchymal stem cells (MSC) are an appealing therapeutic cell type for many diseases. However, patients with poor health or advanced age often have MSCs with poor regenerative properties. A major limiter of MSC therapies is cellular senescence, which is marked by limited proliferation capability, diminished multipotency, and reduced regenerative properties. In this work, we explored the ability of applied mechanical forces to reduce cellular senescence in MSCs. Our studies revealed that mechanical conditioning caused a lasting enhancement in proliferation, overall cell culture expansion potential, multipotency, and a reduction of senescence in MSCs from aged donors. Mechanistic studies suggested that these functional enhancements were mediated by oxidative stress and DNA damage repair signaling with mechanical load altering the expression of proteins of the sirtuin pathway, the DNA damage repair protein ATM, and antioxidant proteins. In addition, our results suggest a biophysical mechanism in which mechanical stretch leads to improved recognition of damaged DNA in the nucleus. Analysis of the cells through RNA-seq and ATAC-seq, demonstrated that mechanical loading alters the cell's genetic landscape to cause broad shifts in transcriptomic patterns that related to senescence. Overall, our results demonstrate that mechanical conditioning can rejuvenate mesenchymal stem cells derived from aged patients and improve their potential as a therapeutic cell type.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38862433

RESUMEN

During the last decade, the generation and accumulation of petabase-scale high-throughput sequencing data have resulted in great challenges, including access to human data, as well as transfer, storage, and sharing of enormous amounts of data. To promote data-driven biological research, the Korean government announced that all biological data generated from government-funded research projects should be deposited at the Korea BioData Station (K-BDS), which consists of multiple databases for individual data types. Here, we introduce the Korean Nucleotide Archive (KoNA), a repository of nucleotide sequence data. As of July 2022, the Korean Read Archive in KoNA has collected over 477 TB of raw next-generation sequencing data from national genome projects. To ensure data quality and prepare for international alignment, a standard operating procedure was adopted, which is similar to that of the International Nucleotide Sequence Database Collaboration. The standard operating procedure includes quality control processes for submitted data and metadata using an automated pipeline, followed by manual examination. To ensure fast and stable data transfer, a high-speed transmission system called GBox is used in KoNA. Furthermore, the data uploaded to or downloaded from KoNA through GBox can be readily processed using a cloud computing service called Bio-Express. This seamless coupling of KoNA, GBox, and Bio-Express enhances the data experience, including submission, access, and analysis of raw nucleotide sequences. KoNA not only satisfies the unmet needs for a national sequence repository in Korea but also provides datasets to researchers globally and contributes to advances in genomics. The KoNA is available at https://www.kobic.re.kr/kona/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , República de Corea , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38753970

RESUMEN

Clopidol is extensively used in livestock farming and residues of this antibiotic can persist in animal tissues, posing a risk to humans and the environment. In this study, we investigated the depletion of clopidol in various edible tissues of chickens (muscle, liver, kidney, fat, and eggs) using liquid chromatography-tandem mass spectrometry after the administration of a clopidol-contaminated diet (at 250 mg kg-1 for the high (1x) dose). After 14 d of exposure, the clopidol concentrations were highest in eggs (median: 9.83 mg/kg), followed by liver (3.56 mg/kg), kidney (3.01 mg/kg), muscle (1.56 mg/kg), and fat (0.727 mg/kg) at low exposure group, indicating that clopidol accumulated primarily in eggs rather than the other edible tissues. In addition, the maternal transfer ratios were estimated, and the transfer efficiencies of clopidol in muscle (egg-to-tissue ratio, ETR:1.81) and fat (2.06-58.2) were higher than those in liver (0.731-31.1) and kidney (0.832-38.9). Furthermore, we conducted a cumulative risk assessment for clopidol in edible chicken tissues using the hazard quotient (HQ) method. This assessment revealed that the exposure levels for Korean consumers pose an acceptable risk. However, for eggs from the 1x dose exposure group, the HQ values were greater than 1 for all age groups, particularly for young children (<18 y), suggesting that the higher daily consumption of eggs combined with the higher clopidol residues in eggs resulted in higher HQ values, which requires further attention. The findings of this study can assist in the management and monitoring of clopidol residues in chicken tissues and eggs.


Asunto(s)
Pollos , Contaminación de Alimentos , Animales , Medición de Riesgo , Contaminación de Alimentos/análisis , Humanos , Huevos/análisis , Riñón/química , Riñón/metabolismo , Espectrometría de Masas en Tándem , Hígado/química , Hígado/metabolismo
5.
Nat Commun ; 15(1): 3312, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632336

RESUMEN

Moiré superlattices of transition metal dichalcogenides offer a unique platform to explore correlated exciton physics with optical spectroscopy. Whereas the spatially modulated potentials evoke that the exciton resonances are distinct depending on a site in a moiré supercell, there have been no clear demonstration how the moiré excitons trapped in different sites dynamically interact with the doped carriers; so far the exciton-electron dynamic interactions were presumed to be site-dependent. Thus, the transient emergence of nonequilibrium correlations are open questions, but existing studies are limited to steady-state optical measurements. Here we report experimental fingerprints of site-dependent exciton correlations under continuous-wave as well as ultrashort optical excitations. In near-zero angle-aligned WSe2/WS2 heterobilayers, we observe intriguing polarization switching and strongly enhanced Pauli blocking near the Mott insulating state, dictating the dominant correlation-driven effects. When the twist angle is near 60°, no such correlations are observed, suggesting the strong dependence of atomic registry in moiré supercell configuration. Our studies open the door to largely unexplored nonequilibrium correlations of excitons in moiré superlattices.

6.
Genome Res ; 34(3): 484-497, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38580401

RESUMEN

Transcriptional regulation controls cellular functions through interactions between transcription factors (TFs) and their chromosomal targets. However, understanding the fate conversion potential of multiple TFs in an inducible manner remains limited. Here, we introduce iTF-seq as a method for identifying individual TFs that can alter cell fate toward specific lineages at a single-cell level. iTF-seq enables time course monitoring of transcriptome changes, and with biotinylated individual TFs, it provides a multi-omics approach to understanding the mechanisms behind TF-mediated cell fate changes. Our iTF-seq study in mouse embryonic stem cells identified multiple TFs that trigger rapid transcriptome changes indicative of differentiation within a day of induction. Moreover, cells expressing these potent TFs often show a slower cell cycle and increased cell death. Further analysis using bioChIP-seq revealed that GCM1 and OTX2 act as pioneer factors and activators by increasing gene accessibility and activating the expression of lineage specification genes during cell fate conversion. iTF-seq has utility in both mapping cell fate conversion and understanding cell fate conversion mechanisms.


Asunto(s)
Diferenciación Celular , Factores de Transcripción , Animales , Ratones , Diferenciación Celular/genética , Linaje de la Célula/genética , Perfilación de la Expresión Génica/métodos , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Multiómica , ARN Citoplasmático Pequeño/genética , ARN Citoplasmático Pequeño/metabolismo , RNA-Seq/métodos , Análisis de Secuencia de ARN/métodos , Análisis de Expresión Génica de una Sola Célula , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcriptoma
7.
Sci Rep ; 14(1): 5338, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438437

RESUMEN

Pesticides are indispensable tools in modern agriculture for enhancing crop productivity. However, the inherent toxicity of pesticides raises significant concerns regarding human exposure, particularly among agricultural workers. This study investigated the exposure and associated risks of two commonly used pesticides in open-field pepper cultivation, namely, chlorothalonil and flubendiamide, in the Republic of Korea. We used a comprehensive approach, encompassing dermal and inhalation exposure measurements in agricultural workers during two critical scenarios: mixing/loading and application. Results revealed that during mixing/loading, dermal exposure to chlorothalonil was 3.33 mg (0.0002% of the total active ingredient [a.i.]), while flubendiamide exposure amounted to 0.173 mg (0.0001% of the a.i.). Conversely, dermal exposure increased significantly during application to 648 mg (chlorothalonil) and 93.1 mg (flubendiamide), representing 0.037% and 0.065% of the total a.i., respectively. Inhalation exposure was also evident, with chlorothalonil and flubendiamide exposure levels varying across scenarios. Notably, the risk assessment using the Risk Index (RI) indicated acceptable risk of exposure during mixing/loading but raised concerns during application, where all RIs exceeded 1, signifying potential risk. We suggest implementing additional personal protective equipment (PPE) during pesticide application, such as gowns and lower-body PPE, to mitigate these risks.


Asunto(s)
Fluorocarburos , Nitrilos , Plaguicidas , Ftalimidas , Piper nigrum , Sulfonas , Humanos , Agricultores , Medición de Riesgo , Benzamidas , Plaguicidas/toxicidad
8.
ACS Chem Biol ; 19(4): 973-980, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38514380

RESUMEN

In the field of natural product research, the rediscovery of already-known compounds is one of the significant issues hindering new drug development. Recently, an innovative approach called bioactivity-HiTES has been developed to overcome this limitation, and several new bioactive metabolites have been successfully characterized by this method. In this study, we applied bioactivity-HiTES to Corynebacterium matruchotii, the human oral bacterium, with 3120 clinical drugs as potential elicitors. As a result, we identified two cryptic metabolites, methylindole-3-acetate (MIAA) and indole-3-acetic acid (IAA), elicited by imidafenacin, a urinary antispasmodic drug approved by the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). MIAA showed weak antibacterial activity against a pulmonary disease-causing Mycobacterium conceptionense with an IC50 value of 185.7 µM. Unexpectedly, we also found that C. matruchotii metabolized fludarabine phosphate, a USFDA-approved anticancer drug, to 2-fluoroadenine which displayed moderate antibacterial activity against both Bacillus subtilis and Escherichia coli, with IC50 values of 8.9 and 20.1 µM, respectively. Finally, acelarin, a prodrug of the anticancer drug gemcitabine, was found to exhibit unreported antibacterial activity against B. subtilis with an IC50 value of 33.6 µM through the bioactivity-HiTES method as well. These results indicate that bioactivity-HiTES can also be applied to discover biotransformed products in addition to finding cryptic metabolites in microbes.


Asunto(s)
Antineoplásicos , Corynebacterium , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Corynebacterium/efectos de los fármacos , Corynebacterium/metabolismo
9.
Mol Cells ; 47(3): 100033, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38403196

RESUMEN

Considering the recent increase in the number of colorectal cancer (CRC) cases in South Korea, we aimed to clarify the molecular characteristics of CRC unique to the Korean population. To gain insights into the complexities of CRC and promote the exchange of critical data, RNA-sequencing analysis was performed to reveal the molecular mechanisms that drive the development and progression of CRC; this analysis is critical for developing effective treatment strategies. We performed RNA-sequencing analysis of CRC and adjacent normal tissue samples from 214 Korean participants (comprising a total of 381 including 169 normal and 212 tumor samples) to investigate differential gene expression between the groups. We identified 19,575 genes expressed in CRC and normal tissues, with 3,830 differentially expressed genes (DEGs) between the groups. Functional annotation analysis revealed that the upregulated DEGs were significantly enriched in pathways related to the cell cycle, DNA replication, and IL-17, whereas the downregulated DEGs were enriched in metabolic pathways. We also analyzed the relationship between clinical information and subtypes using the Consensus Molecular Subtype (CMS) classification. Furthermore, we compared groups clustered within our dataset to CMS groups and performed additional analysis of the methylation data between DEGs and CMS groups to provide comprehensive biological insights from various perspectives. Our study provides valuable insights into the molecular mechanisms underlying CRC in Korean patients and serves as a platform for identifying potential target genes for this disease. The raw data and processed results have been deposited in a public repository for further analysis and exploration.


Asunto(s)
Neoplasias Colorrectales , Perfilación de la Expresión Génica , Humanos , Perfilación de la Expresión Génica/métodos , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Biología Computacional/métodos , ARN
10.
Nat Commun ; 15(1): 1285, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346993

RESUMEN

During human pregnancy, extravillous trophoblasts play crucial roles in placental invasion into the maternal decidua and spiral artery remodeling. However, regulatory factors and their action mechanisms modulating human extravillous trophoblast specification have been unknown. By analyzing dynamic changes in transcriptome and enhancer profile during human trophoblast stem cell to extravillous trophoblast differentiation, we define stage-specific regulators, including an early-stage transcription factor, TFAP2C, and multiple late-stage transcription factors. Loss-of-function studies confirm the requirement of all transcription factors identified for adequate differentiation, and we reveal that the dynamic changes in the levels of TFAP2C are essential. Notably, TFAP2C pre-occupies the regulatory elements of the inactive extravillous trophoblast-active genes during the early stage of differentiation, and the late-stage transcription factors directly activate extravillous trophoblast-active genes, including themselves as differentiation further progresses, suggesting sequential actions of transcription factors assuring differentiation. Our results reveal stage-specific transcription factors and their inter-connected regulatory mechanisms modulating extravillous trophoblast differentiation, providing a framework for understanding early human placentation and placenta-related complications.


Asunto(s)
Trofoblastos Extravellosos , Placenta , Embarazo , Humanos , Femenino , Trofoblastos , Diferenciación Celular/genética , Factores de Transcripción/genética , Células Madre
11.
Nano Lett ; 24(4): 1277-1283, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38232182

RESUMEN

We reveal the critical effect of ultrashort dephasing on the polarization of high harmonic generation in Dirac fermions. As the elliptically polarized laser pulse falls in or slightly beyond the multiphoton regime, the elliptically polarized high harmonic generation is produced and exhibits a characteristic polarimetry of the polarization ellipse, which is found to depend on the decoherence time T2. T2 could then be determined to be a few femtoseconds directly from the experimentally observed polarimetry of high harmonics. This shows a sharp contrast with the semimetal regime of higher pump intensity, where the polarimetry is irrelevant to T2. An access to the dephasing dynamics would extend the prospect of high harmonic generation into the metrology of a femtosecond dynamic process in the coherent quantum control.

12.
Nature ; 625(7994): 264-269, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38093009

RESUMEN

Spin nematic is a magnetic analogue of classical liquid crystals, a fourth state of matter exhibiting characteristics of both liquid and solid1,2. Particularly intriguing is a valence-bond spin nematic3-5, in which spins are quantum entangled to form a multipolar order without breaking time-reversal symmetry, but its unambiguous experimental realization remains elusive. Here we establish a spin nematic phase in the square-lattice iridate Sr2IrO4, which approximately realizes a pseudospin one-half Heisenberg antiferromagnet in the strong spin-orbit coupling limit6-9. Upon cooling, the transition into the spin nematic phase at TC ≈ 263 K is marked by a divergence in the static spin quadrupole susceptibility extracted from our Raman spectra and concomitant emergence of a collective mode associated with the spontaneous breaking of rotational symmetries. The quadrupolar order persists in the antiferromagnetic phase below TN ≈ 230 K and becomes directly observable through its interference with the antiferromagnetic order in resonant X-ray diffraction, which allows us to uniquely determine its spatial structure. Further, we find using resonant inelastic X-ray scattering a complete breakdown of coherent magnon excitations at short-wavelength scales, suggesting a many-body quantum entanglement in the antiferromagnetic state10,11. Taken together, our results reveal a quantum order underlying the Néel antiferromagnet that is widely believed to be intimately connected to the mechanism of high-temperature superconductivity12,13.

13.
Nucleic Acids Res ; 51(20): 11178-11196, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37850636

RESUMEN

Von Hippel-Lindau (VHL) is a tumor suppressor that functions as the substrate recognition subunit of the CRL2VHL E3 complex. While substrates of VHL have been identified, its tumor suppressive role remains to be fully understood. For further determination of VHL substrates, we analyzed the physical interactome of VHL and identified the histone H3K9 methyltransferase SETBD1 as a novel target. SETDB1 undergoes oxygen-dependent hydroxylation by prolyl hydroxylase domain proteins and the CRL2VHL complex recognizes hydroxylated SETDB1 for ubiquitin-mediated degradation. Under hypoxic conditions, SETDB1 accumulates by escaping CRL2VHL activity. Loss of SETDB1 in hypoxia compared with that in normoxia escalates the production of transposable element-derived double-stranded RNAs, thereby hyperactivating the immune-inflammatory response. In addition, strong derepression of TEs in hypoxic cells lacking SETDB1 triggers DNA damage-induced death. Our collective results support a molecular mechanism of oxygen-dependent SETDB1 degradation by the CRL2VHL E3 complex and reveal a role of SETDB1 in genome stability under hypoxia.


Asunto(s)
Inestabilidad Genómica , N-Metiltransferasa de Histona-Lisina , Hipoxia , Humanos , Genes Supresores de Tumor , N-Metiltransferasa de Histona-Lisina/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
14.
iScience ; 26(9): 107675, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37680467

RESUMEN

To gain deeper insights into transcriptomes and epigenomes of organoids, liver organoids from two states (expandable and more differentiated) were subjected to single-cell RNA-seq (scRNA-seq) and single-cell ATAC-seq (scATAC-seq) analyses. Mitochondrial gene expression was higher in differentiated than in non-differentiated hepatocytes, with ATAC-seq peaks increasing near the mitochondrial control region. Differentiation of liver organoids resulted in the expression of transcription factors that act as enhancers and repressors. In addition, epigenetic mechanisms regulating the expression of alpha-fetoprotein (AFP) and albumin (ALB) differed in liver organoids and adult liver. Knockdown of PDX1, an essential transcription factor for pancreas development, led to the hepatic maturation of liver organoids through regulation of AFP and ALB expression. This integrative analysis of the transcriptomes and epigenomes of liver organoids at the single-cell level may contribute to a better understanding of the regulatory networks during liver development and the further development of mature in vitro human liver models.

15.
J Imaging ; 9(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37623693

RESUMEN

This paper presents a system that utilizes vision transformers and multimodal feedback modules to facilitate navigation and collision avoidance for the visually impaired. By implementing vision transformers, the system achieves accurate object detection, enabling the real-time identification of objects in front of the user. Semantic segmentation and the algorithms developed in this work provide a means to generate a trajectory vector of all identified objects from the vision transformer and to detect objects that are likely to intersect with the user's walking path. Audio and vibrotactile feedback modules are integrated to convey collision warning through multimodal feedback. The dataset used to create the model was captured from both indoor and outdoor settings under different weather conditions at different times across multiple days, resulting in 27,867 photos consisting of 24 different classes. Classification results showed good performance (95% accuracy), supporting the efficacy and reliability of the proposed model. The design and control methods of the multimodal feedback modules for collision warning are also presented, while the experimental validation concerning their usability and efficiency stands as an upcoming endeavor. The demonstrated performance of the vision transformer and the presented algorithms in conjunction with the multimodal feedback modules show promising prospects of its feasibility and applicability for the navigation assistance of individuals with vision impairment.

17.
BMB Rep ; 56(10): 569-574, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37605616

RESUMEN

Aberrant DNA methylation plays a pivotal role in the onset and progression of colorectal cancer (CRC), a disease with high incidence and mortality rates in Korea. Several CRC-associated diagnostic and prognostic methylation markers have been identified; however, due to a lack of comprehensive clinical and methylome data, these markers have not been validated in the Korean population. Therefore, in this study, we aimed to obtain the CRC methylation profile using 172 tumors and 128 adjacent normal colon tissues of Korean patients with CRC. Based on the comparative methylome analysis, we found that hypermethylated positions in the tumor were predominantly concentrated in CpG islands and promoter regions, whereas hypomethylated positions were largely found in the open-sea region, notably distant from the CpG islands. In addition, we stratified patients by applying the CpG island methylator phenotype (CIMP) to the tumor methylome data. This stratification validated previous clinicopathological implications, as tumors with high CIMP signatures were significantly correlated with the proximal colon, higher prevalence of microsatellite instability status, and MLH1 promoter methylation. In conclusion, our extensive methylome analysis and the accompanying dataset offers valuable insights into the utilization of CRC-associated methylation markers in Korean patients, potentially improving CRC diagnosis and prognosis. Furthermore, this study serves as a solid foundation for further investigations into personalized and ethnicity-specific CRC treatments. [BMB Reports 2023; 56(10): 569-574].


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Humanos , Metilación de ADN/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Islas de CpG/genética , República de Corea , Fenotipo
18.
Cell Host Microbe ; 31(6): 1021-1037.e10, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37269833

RESUMEN

Commensal bacteria are critically involved in the establishment of tolerance against inflammatory challenges, the molecular mechanisms of which are just being uncovered. All kingdoms of life produce aminoacyl-tRNA synthetases (ARSs). Thus far, the non-translational roles of ARSs have largely been reported in eukaryotes. Here, we report that the threonyl-tRNA synthetase (AmTARS) of the gut-associated bacterium Akkermansia muciniphila is secreted and functions to monitor and modulate immune homeostasis. Secreted AmTARS triggers M2 macrophage polarization and orchestrates the production of anti-inflammatory IL-10 via its unique, evolutionary-acquired regions, which mediates specific interactions with TLR2. This interaction activates the MAPK and PI3K/AKT signaling pathways, which converge on CREB, leading to an efficient production of IL-10 and suppression of the central inflammatory mediator NF-κB. AmTARS restores IL-10-positive macrophages, increases IL-10 levels in the serum, and attenuates the pathological effects in colitis mice. Thus, commensal tRNA synthetases can act as intrinsic mediators that maintain homeostasis.


Asunto(s)
Treonina-ARNt Ligasa , Animales , Ratones , Treonina-ARNt Ligasa/metabolismo , Interleucina-10/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Verrucomicrobia/metabolismo , Homeostasis , ARN de Transferencia/metabolismo
19.
Nanomaterials (Basel) ; 13(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37299688

RESUMEN

Optimization of equipment structure and process conditions is essential to obtain thin films with the required properties, such as film thickness, trapped charge density, leakage current, and memory characteristics, that ensure reliability of the corresponding device. In this study, we fabricated metal-insulator-semiconductor (MIS) structure capacitors using HfO2 thin films separately deposited by remote plasma (RP) atomic layer deposition (ALD) and direct-plasma (DP) ALD and determined the optimal process temperature by measuring the leakage current and breakdown strength as functions of process temperature. Additionally, we analyzed the effects of the plasma application method on the charge trapping properties of HfO2 thin films and properties of the interface between Si and HfO2. Subsequently, we synthesized charge-trapping memory (CTM) devices utilizing the deposited thin films as charge-trapping layers (CTLs) and evaluated their memory properties. The results indicated excellent memory window characteristics of the RP-HfO2 MIS capacitors compared to those of the DP-HfO2 MIS capacitors. Moreover, the memory characteristics of the RP-HfO2 CTM devices were outstanding as compared to those of the DP-HfO2 CTM devices. In conclusion, the methodology proposed herein can be useful for future implementations of multiple levels of charge-storage nonvolatile memories or synaptic devices that require many states.

20.
Blood ; 142(7): 658-674, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37267513

RESUMEN

Myeloid cell heterogeneity is known, but whether it is cell-intrinsic or environmentally-directed remains unclear. Here, an inducible/reversible system pausing myeloid differentiation allowed the definition of clone-specific functions that clustered monocytes into subsets with distinctive molecular features. These subsets were orthogonal to the classical/nonclassical categorization and had inherent, restricted characteristics that did not shift under homeostasis, after irradiation, or with infectious stress. Rather, their functional fate was constrained by chromatin accessibility established at or before the granulocyte-monocyte or monocyte-dendritic progenitor level. Subsets of primary monocytes had differential ability to control distinct infectious agents in vivo. Therefore, monocytes are a heterogeneous population of functionally restricted subtypes defined by the epigenome of their progenitors that are differentially selected by physiologic challenges with limited plasticity to transition from one subset to another.


Asunto(s)
Granulocitos , Monocitos , Células Progenitoras Mieloides , Epigenoma , Epigénesis Genética , Diferenciación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...