Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892302

RESUMEN

Urban air pollution, a significant environmental hazard, is linked to adverse health outcomes and increased mortality across various diseases. This study investigates the neurotoxic effects of particulate matter (PM), specifically PM2.5 and PM10, by examining their role in inducing oxidative stress and subsequent neuronal cell death. We highlight the novel finding that PM increases mitochondrial ROS production via stimulating NOX4 activity, not through its expression level in Neuro-2A cells. Additionally, PMs provoke ROS production via increasing the expression and activity of NOX2 in SH-SY5Y human neuroblastoma cells, implying differential regulation of NOX proteins. This increase in mitochondrial ROS triggers the opening of the mitochondrial permeability transition pore (mPTP), leading to apoptosis through key mediators, including caspase3, BAX, and Bcl2. Notably, the voltage-dependent anion-selective channel 1 (VDAC1) increases at 1 µg/mL of PM2.5, while PM10 triggers an increase from 10 µg/mL. At the same concentration (100 µg/mL), PM2.5 causes 1.4 times higher ROS production and 2.4 times higher NOX4 activity than PM10. The cytotoxic effects induced by PMs were alleviated by NOX inhibitors GKT137831 and Apocynin. In SH-SY5Y cells, both PM types increase ROS and NOX2 levels, leading to cell death, which Apocynin rescues. Variability in NADPH oxidase sources underscores the complexity of PM-induced neurotoxicity. Our findings highlight NOX4-driven ROS and mitochondrial dysfunction, suggesting a potential therapeutic approach for mitigating PM-induced neurotoxicity.


Asunto(s)
Apoptosis , Mitocondrias , NADPH Oxidasa 4 , Neuronas , Material Particulado , Especies Reactivas de Oxígeno , Material Particulado/toxicidad , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Línea Celular Tumoral , Estrés Oxidativo/efectos de los fármacos , Animales , Ratones , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética
2.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892378

RESUMEN

Dementia, a multifaceted neurological syndrome characterized by cognitive decline, poses significant challenges to daily functioning. The main causes of dementia, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), and vascular dementia (VD), have different symptoms and etiologies. Genetic regulators, specifically non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are known to play important roles in dementia pathogenesis. MiRNAs, small non-coding RNAs, regulate gene expression by binding to the 3' untranslated regions of target messenger RNAs (mRNAs), while lncRNAs and circRNAs act as molecular sponges for miRNAs, thereby regulating gene expression. The emerging concept of competing endogenous RNA (ceRNA) interactions, involving lncRNAs and circRNAs as competitors for miRNA binding, has gained attention as potential biomarkers and therapeutic targets in dementia-related disorders. This review explores the regulatory roles of ncRNAs, particularly miRNAs, and the intricate dynamics of ceRNA interactions, providing insights into dementia pathogenesis and potential therapeutic avenues.


Asunto(s)
Demencia , Regulación de la Expresión Génica , MicroARNs , ARN Circular , ARN Largo no Codificante , ARN no Traducido , Humanos , Demencia/genética , Demencia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Animales , Biomarcadores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo
3.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674135

RESUMEN

Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-ß (TGF-ß) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , ARN no Traducido , Transducción de Señal , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales
4.
Theor Appl Genet ; 137(5): 97, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589740

RESUMEN

KEY MESSAGE: Bulked segregant RNA seq of pools of pepper accessions that are susceptible or resistant to Broad bean wilt virus 2 identifies a gene that might confer resistance to this devastating pathogen. The single-stranded positive-sense RNA virus Broad bean wilt virus 2 (BBWV2) causes substantial damage to pepper (Capsicum annuum) cultivation. Here, we describe mapping the BBWV2 resistance locus bwvr using a F7:8 recombinant inbred line (RIL) population constructed by crossing the BBWV2-resistant pepper accession 'SNU-C' with the susceptible pepper accession 'ECW30R.' All F1 plants infected with the BBWV2 strain PAP1 were susceptible to the virus, and the RIL population showed a 1:1 ratio of resistance to susceptibility, indicating that this trait is controlled by a single recessive gene. To map bwvr, we performed bulked segregant RNA-seq (BSR-seq). We sequenced pools of resistant and susceptible lines from the RILs and aligned the reads to the high-quality 'Dempsey' reference genome to identify variants between the pools. This analysis identified 519,887 variants and selected the region from 245.9-250.8 Mb of the Dempsey reference genome as the quantitative trait locus region for bwvr. To finely map bwvr, we used newly designed high-resolution melting (HRM) and Kompetitive allele specific PCR (KASP) markers based on variants obtained from the BSR-seq reads and the PepperSNP16K array. Comparative analysis identified 11 SNU-C-specific SNPs within the bwvr locus. Using markers derived from these variants, we mapped the candidate bwvr locus to the region from 246.833-246.949 kb. SNU-C-specific variants clustered near DEM.v1.00035533 within the bwvr locus. DEM.v1.00035533 encodes the nitrate transporter NPF1.2 and contains a SNP within its 5' untranslated region. The bwvr locus, which contains four genes including DEM.v1.00035533, could represent a valuable resource for global pepper breeding programs.


Asunto(s)
Capsicum , Fabavirus , Mapeo Cromosómico , RNA-Seq , Capsicum/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética
5.
Theor Appl Genet ; 137(5): 101, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607449

RESUMEN

KEY MESSAGE: The pepper mutants ('221-2-1a' and '1559-1-2h') with very low pungency were genetically characterized. The Pun4 locus, responsible for the reduced pungency of the mutant fruits, was localized to a 208 Mb region on chromosome 6. DEMF06G16460, encoding 3-ketoacyl-CoA synthase, was proposed as a strong candidate gene based on the genetic analyses of bulked segregants, DEG, and expression analyses. Capsaicinoids are unique alkaloids present in pepper (Capsicum spp.), synthesized through the condensation of by-products from the phenylpropanoid and branched-chain fatty acid pathways, and accumulating in the placenta. In this study, we characterized two allelic ethyl methanesulfonate-induced mutant lines with extremely low pungency ('221-2-1a' and '1559-1-2h'). These mutants, derived from the pungent Korean landrace 'Yuwolcho,' exhibited lower capsaicinoid content than Yuwolcho but still contained a small amount of capsaicinoid with functional capsaicinoid biosynthetic genes. Genetic crosses between the mutants and Yuwolcho or pungent lines indicated that a single recessive mutation was responsible for the low-pungency phenotype of mutant 221-2-1a; we named the causal locus Pungency 4 (Pun4). To identify Pun4, we combined genome-wide polymorphism analysis and transcriptome analysis with bulked-segregant analysis. We narrowed down the location of Pun4 to a 208-Mb region on chromosome 6 containing five candidate genes, of which DEMF06G16460, encoding a 3-ketoacyl-CoA synthase associated with branched-chain fatty acid biosynthesis, is the most likely candidate for Pun4. The expression of capsaicinoid biosynthetic genes in placental tissues in Yuwolcho and the mutant was consistent with the branched-chain fatty acid pathway playing a pivotal role in the lower pungency observed in the mutant. We also obtained a list of differentially expressed genes in placental tissues between the mutant and Yuwolcho, from which we selected candidate genes using gene co-expression analysis. In summary, we characterized the capsaicinoid biosynthesis-related locus Pun4 through integrated of genetic, genomic, and transcriptome analyses. These findings will contribute to our understanding of capsaicinoid biosynthesis in pepper.


Asunto(s)
Capsicum , Embarazo , Femenino , Humanos , Capsicum/genética , Placenta , Alelos , Alcanfor , Ácidos Grasos
7.
J Neuroeng Rehabil ; 21(1): 43, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555417

RESUMEN

BACKGROUND: Conventional diagnostic methods for dysphagia have limitations such as long wait times, radiation risks, and restricted evaluation. Therefore, voice-based diagnostic and monitoring technologies are required to overcome these limitations. Based on our hypothesis regarding the impact of weakened muscle strength and the presence of aspiration on vocal characteristics, this single-center, prospective study aimed to develop a machine-learning algorithm for predicting dysphagia status (normal, and aspiration) by analyzing postprandial voice limiting intake to 3 cc. METHODS: Conducted from September 2021 to February 2023 at Seoul National University Bundang Hospital, this single center, prospective cohort study included 198 participants aged 40 or older, with 128 without suspected dysphagia and 70 with dysphagia-aspiration. Voice data from participants were collected and used to develop dysphagia prediction models using the Multi-Layer Perceptron (MLP) with MobileNet V3. Male-only, female-only, and combined models were constructed using 10-fold cross-validation. Through the inference process, we established a model capable of probabilistically categorizing a new patient's voice as either normal or indicating the possibility of aspiration. RESULTS: The pre-trained models (mn40_as and mn30_as) exhibited superior performance compared to the non-pre-trained models (mn4.0 and mn3.0). Overall, the best-performing model, mn30_as, which is a pre-trained model, demonstrated an average AUC across 10 folds as follows: combined model 0.8361 (95% CI 0.7667-0.9056; max 0.9541), male model 0.8010 (95% CI 0.6589-0.9432; max 1.000), and female model 0.7572 (95% CI 0.6578-0.8567; max 0.9779). However, for the female model, a slightly higher result was observed with the mn4.0, which scored 0.7679 (95% CI 0.6426-0.8931; max 0.9722). Additionally, the other models (pre-trained; mn40_as, non-pre-trained; mn4.0 and mn3.0) also achieved performance above 0.7 in most cases, and the highest fold-level performance for most models was approximately around 0.9. The 'mn' in model names refers to MobileNet and the following number indicates the 'width_mult' parameter. CONCLUSIONS: In this study, we used mel-spectrogram analysis and a MobileNetV3 model for predicting dysphagia aspiration. Our research highlights voice analysis potential in dysphagia screening, diagnosis, and monitoring, aiming for non-invasive safer, and more effective interventions. TRIAL REGISTRATION: This study was approved by the IRB (No. B-2109-707-303) and registered on clinicaltrials.gov (ID: NCT05149976).


Asunto(s)
Trastornos de Deglución , Femenino , Humanos , Masculino , Algoritmos , Trastornos de Deglución/diagnóstico , Trastornos de Deglución/etiología , Aprendizaje Automático , Estudios Prospectivos , Aspiración Respiratoria/diagnóstico , Aspiración Respiratoria/etiología , Adulto
8.
Cell Rep ; 43(3): 113933, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38460131

RESUMEN

Anorexia nervosa (AN) is a serious psychiatric disease, but the neural mechanisms underlying its development are unclear. A subpopulation of amygdala neurons, marked by expression of protein kinase C-delta (PKC-δ), has previously been shown to regulate diverse anorexigenic signals. Here, we demonstrate that these neurons regulate development of activity-based anorexia (ABA), a common animal model for AN. PKC-δ neurons are located in two nuclei of the central extended amygdala (EAc): the central nucleus (CeA) and oval region of the bed nucleus of the stria terminalis (ovBNST). Simultaneous ablation of CeAPKC-δ and ovBNSTPKC-δ neurons prevents ABA, but ablating PKC-δ neurons in the CeA or ovBNST alone is not sufficient. Correspondingly, PKC-δ neurons in both nuclei show increased activity with ABA development. Our study shows how neurons in the amygdala regulate ABA by impacting both feeding and wheel activity behaviors and support a complex heterogeneous etiology of AN.


Asunto(s)
Núcleo Amigdalino Central , Núcleos Septales , Animales , Proteína Quinasa C-delta/metabolismo , Anorexia/metabolismo , Neuronas/metabolismo , Núcleo Amigdalino Central/metabolismo , Vías Nerviosas/fisiología , Núcleos Septales/fisiología
9.
Nat Chem ; 16(5): 693-699, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528103

RESUMEN

Crystalline systems consisting of small-molecule building blocks have emerged as promising materials with diverse applications. It is of great importance to characterize not only their static structures but also the conversion of their structures in response to external stimuli. Femtosecond time-resolved crystallography has the potential to probe the real-time dynamics of structural transitions, but, thus far, this has not been realized for chemical reactions in non-biological crystals. In this study, we applied time-resolved serial femtosecond crystallography (TR-SFX), a powerful technique for visualizing protein structural dynamics, to a metal-organic framework, consisting of Fe porphyrins and hexazirconium nodes, and elucidated its structural dynamics. The time-resolved electron density maps derived from the TR-SFX data unveil trifurcating structural pathways: coherent oscillatory movements of Zr and Fe atoms, a transient structure with the Fe porphyrins and Zr6 nodes undergoing doming and disordering movements, respectively, and a vibrationally hot structure with isotropic structural disorder. These findings demonstrate the feasibility of using TR-SFX to study chemical systems.

10.
Adv Mater ; 36(19): e2311029, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38299366

RESUMEN

Practical application of triboelectric nanogenerators (TENGs) has been challenging, particularly, under harsh environmental conditions. This work proposes a novel 3D-fused aromatic ladder (FAL) structure as a tribo-positive material for TENGs, to address these challenges. The 3D-FAL offers a unique materials engineering platform for tailored properties, such as high specific surface area and porosity, good thermal and mechanical stability, and tunable electronic properties. The fabricated 3D-FAL-based TENG reaches a maximum peak power density of 451.2 µW cm-2 at 5 Hz frequency. More importantly, the 3D-FAL-based TENG maintains stable output performance under harsh operating environments, over wide temperature (-45-100 °C) and humidity ranges (8.3-96.7% RH), representing the development of novel FAL for sustainable energy generation under challenging environmental conditions. Furthermore, the 3D-FAL-based TENG proves to be a promising device for a speed monitoring system engaging reconstruction in virtual reality in a snowy environment.

11.
Sci Rep ; 14(1): 4723, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413664

RESUMEN

Z-DNA, a well-known non-canonical form of DNA involved in gene regulation, is often found in gene promoters. Transposable elements (TEs), which make up 45% of the human genome, can move from one location to another within the genome. TEs play various biological roles in host organisms, and like Z-DNA, can influence transcriptional regulation near promoter regions. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a critical role in the regulation of gene expression. Although TEs can generate Z-DNA and miRNAs can bind to Z-DNA, how these factors affect gene transcription has yet to be elucidated. Here, we identified potential Z-DNA forming sequence (ZFS), including TE-derived ZFS, in the promoter of prostaglandin reductase 1 (PTGR1) by data analysis. The transcriptional activity of these ZFS in PTGR1 was confirmed using dual-luciferase reporter assays. In addition, we discovered a novel ZFS-binding miRNA (miR-6867-5p) that suppressed PTGR1 expression by targeting to ZFS. In conclusion, these findings suggest that ZFS, including TE-derived ZFS, can regulate PTGR1 gene expression and that miR-6867-5p can suppress PTGR1 by interacting with ZFS.


Asunto(s)
ADN de Forma Z , MicroARNs , Humanos , Elementos Transponibles de ADN/genética , Expresión Génica , Regulación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo
12.
Heliyon ; 10(3): e25136, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322884

RESUMEN

The growing interest in microalgae and cyanobacteria biomass as an alternative to traditional animal feed is hindered by high production costs. Using wastewater (WW) as a cultivation medium could offer a solution, but this approach risks introducing harmful substances into the biomass, leading to significant safety concerns. In this study, we addressed these challenges by selectively extracting nitrates and phosphates from WW using drinking water treatment residuals (DWTR) and chitosan. This method achieved peak adsorption capacities of 4.4 mg/g for nitrate and 6.1 mg/g for phosphate with a 2.5 wt% chitosan blend combined with DWTR-nitrogen. Subsequently, these extracted nutrients were employed to cultivate Spirulina platensis, yielding a biomass productivity rate of 0.15 g/L/d, which is comparable to rates achieved with commercial nutrients. By substituting commercial nutrients with nitrate and phosphate from WW, we can achieve a 18 % reduction in the culture medium cost. While the cultivated biomass was initially nitrogen-deficient due to low nitrate levels, it proved to be protein-rich, accounting for 50 % of its dry weight, and contained a high concentration of free amino acids (1260 mg/g), encompassing all essential amino acids. Both in vitro and in vivo toxicity tests affirmed the biomass's safety for use as an animal feed component. Future research should aim to enhance the economic feasibility of this alternative feed source by developing efficient adsorbents, utilizing cost-effective reagents, and implementing nutrient reuse strategies in spent mediums.

13.
Nature ; 625(7996): 710-714, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200317

RESUMEN

Molecular ions are ubiquitous and play pivotal roles1-3 in many reactions, particularly in the context of atmospheric and interstellar chemistry4-6. However, their structures and conformational transitions7,8, particularly in the gas phase, are less explored than those of neutral molecules owing to experimental difficulties. A case in point is the halonium ions9-11, whose highly reactive nature and ring strain make them short-lived intermediates that are readily attacked even by weak nucleophiles and thus challenging to isolate or capture before they undergo further reaction. Here we show that mega-electronvolt ultrafast electron diffraction (MeV-UED)12-14, used in conjunction with resonance-enhanced multiphoton ionization, can monitor the formation of 1,3-dibromopropane (DBP) cations and their subsequent structural dynamics forming a halonium ion. We find that the DBP+ cation remains for a substantial duration of 3.6 ps in aptly named 'dark states' that are structurally indistinguishable from the DBP electronic ground state. The structural data, supported by surface-hopping simulations15 and ab initio calculations16, reveal that the cation subsequently decays to iso-DBP+, an unusual intermediate with a four-membered ring containing a loosely bound17,18 bromine atom, and eventually loses the bromine atom and forms a bromonium ion with a three-membered-ring structure19. We anticipate that the approach used here can also be applied to examine the structural dynamics of other molecular ions and thereby deepen our understanding of ion chemistry.

14.
Hortic Res ; 11(1): uhad233, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222822

RESUMEN

Genome editing (GE) using CRISPR/Cas systems has revolutionized plant mutagenesis. However, conventional transgene-mediated GE methods have limitations due to the time-consuming generation of stable transgenic lines expressing the Cas9/single guide RNA (sgRNA) module through tissue cultures. Virus-induced genome editing (VIGE) systems have been successfully employed in model plants, such as Arabidopsis thaliana and Nicotiana spp. In this study, we developed two VIGE methods for Solanaceous plants. First, we used the tobacco rattle virus (TRV) vector to deliver sgRNAs into a transgenic tomato (Solanum lycopersicum) line of cultivar Micro-Tom expressing Cas9. Second, we devised a transgene-free GE method based on a potato virus X (PVX) vector to deliver Cas9 and sgRNAs. We designed and cloned sgRNAs targeting Phytoene desaturase in the VIGE vectors and determined optimal conditions for VIGE. We evaluated VIGE efficiency through deep sequencing of the target gene after viral vector inoculation, detecting 40.3% and 36.5% mutation rates for TRV- and PVX-mediated GE, respectively. To improve editing efficiency, we applied a 37°C heat treatment, which increased the editing efficiency by 33% to 46% and 56% to 76% for TRV- and PVX-mediated VIGE, respectively. To obtain edited plants, we subjected inoculated cotyledons to tissue culture, yielding successful editing events. We also demonstrated that PVX-mediated GE can be applied to other Solanaceous crops, such as potato (Solanum tuberosum) and eggplant (Solanum melongena). These simple and highly efficient VIGE methods have great potential for generating genome-edited plants in Solanaceous crops.

15.
Sci Rep ; 13(1): 20691, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001232

RESUMEN

This prospective pilot study aimed to develop a personalized hip brace for treating hip subluxation in children with cerebral palsy. Nineteen children, aged 1-15, with severe cerebral palsy participated in the study. Customized hip braces were created based on 3D scanner measurements and worn for 7 days. The primary outcome, Hip Migration Index (MI), and secondary outcomes, including range of motion (ROM) in the hip and knee joints, pain intensity, satisfaction, discomfort scores, CPCHILD, and wearability test, were assessed. The MI and ROM were assessed at screening and at Visit 1 (when the new hip brace was first worn), while other indicators were evaluated at screening, Visit 1, and Visit 2 (7 days after wearing the new hip brace). The study demonstrated significant improvements in the MI for the right hip, left hip, and both sides. However, there were no statistically significant differences in hip and knee joint ROM. Other indicators showed significant changes between screening, Visit 1, and Visit 2. The study suggests that customized hip braces effectively achieved immediate correction, positively impacting the quality of life and satisfaction in children with cerebral palsy. Furthermore, the hip braces have the potential to enhance compliance and prevent hip subluxation.Clinical Trial Registration number: NCT05388422.


Asunto(s)
Parálisis Cerebral , Luxaciones Articulares , Niño , Humanos , Parálisis Cerebral/terapia , Calidad de Vida , Estudios Prospectivos , Proyectos Piloto , Tirantes
16.
Genes (Basel) ; 14(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38002927

RESUMEN

Transposable elements (TEs) are mobile DNA entities that can move within the host genome. Over long periods of evolutionary time, TEs are typically silenced via the accumulation of mutations in the genome, ultimately resulting in their immobilization. However, they still play an important role in the host genome by acting as regulatory elements. They influence host transcription in various ways, one of which as the origin of the generation of microRNAs (miRNAs), which are so-called miRNAs derived from TEs (MDTEs). miRNAs are small non-coding RNAs that are involved in many biological processes by regulating gene expression at the post-transcriptional level. Here, we identified MDTEs in the Macaca mulatta (rhesus monkey) genome, which is phylogenetically close species to humans, based on the genome coordinates of miRNAs and TEs. The expression of 5 out of 17 MDTEs that were exclusively registered in M. mulatta from the miRBase database (v22) was examined via quantitative polymerase chain reaction (qPCR). Moreover, Gene Ontology analysis was performed to examine the functional implications of the putative target genes of the five MDTEs.


Asunto(s)
MicroARNs , Humanos , Animales , MicroARNs/genética , MicroARNs/metabolismo , Elementos Transponibles de ADN/genética , Macaca mulatta/genética , Macaca mulatta/metabolismo , Mutación
17.
Pathogens ; 12(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38003751

RESUMEN

Cutibacterium acnes, a prevalent skin commensal, has emerged as a significant global challenge due to its widespread antibiotic resistance. To investigate the antibiotic resistance mechanisms and clinical characterization of C. acnes in Korea, we collected 22 clinical isolates from diverse patient specimens obtained from the National Culture Collection for Pathogens across Korea. Among the isolates, KB112 isolate was subjected to whole genome sequencing due to high resistance against clindamycin, erythromycin, tetracycline, doxycycline, and minocycline. The whole genome analysis of KB112 isolate revealed a circular chromosome of 2,534,481 base pair with an average G + C content of 60.2% with sequence type (ST) 115, harboring the potential virulent CAMP factor pore-forming toxin 2 (CAMP2), the multidrug resistance ABC transporter ATP-binding protein YknY, and the multidrug efflux protein YfmO. The genomic sequence also showed the existence of a plasmid (30,947 bp) containing the erm(50) and tet(W) gene, which confer resistance to macrolide-clindamycin and tetracycline, respectively. This study reports plasmid-mediated multi-drug resistance of C. acnes for the first time in Korea.

18.
J Funct Biomater ; 14(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37888151

RESUMEN

(1) Background: The purpose of this study was to evaluate how a zirconia implant surface treated with laser technology affects the degree of biofilm formation. (2) Methods: Experimental titanium (Ti) disks were produced that were sandblasted with large grit and acid-etched (T), and they were compared with zirconia (ZrO2) discs with a machined (M) surface topography; a hydrophilic surface topography with a femtosecond laser (HF); and a hydrophobic surface topography with a nanosecond laser (HN) (N = 12 per surface group). An in vitro three-species biofilm sample (Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi)) was applied to each disc type, and bacterial adhesion was assessed after 48 and 72 h of incubation using an anaerobic flow chamber model. Statistical significance was determined using the Kruskal-Wallis H test, with Bonferroni correction used for the post-hoc test (α = 0.05). (3) Results: Compared to the T group, the M group exhibited more than twice as many viable bacterial counts in the three-species biofilm samples (p < 0.05). In comparison to the T group, the HF group had significantly higher viable bacterial counts in certain biofilm samples at 48 h (Aa and Pi) and 72 h (Pi) (p < 0.05). The HN group had higher viable bacterial counts in Pi at 48 h (5400 CFU/mL, p < 0.05) than the T group (4500 CFU/mL), while showing significantly lower viable bacterial counts in Pg at both 48 (3010 CFU/mL) and 72 h (3190 CFU/mL) (p < 0.05). (4) Conclusions: The surface treatment method for zirconia discs greatly influences biofilm formation. Notably, hydrophobic surface treatment using a nanosecond laser was particularly effective at inhibiting Pg growth.

19.
J Am Chem Soc ; 145(43): 23715-23726, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856865

RESUMEN

[Ce(III)Cl6]3-, with its earth-abundant metal element, is a promising photocatalyst facilitating carbon-halogen bond activation. Still, the structure of the reaction intermediate has yet to be explored. Here, we applied time-resolved X-ray liquidography (TRXL), which allows for direct observation of the structural details of reaction intermediates, to investigate the photocatalytic reaction of [Ce(III)Cl6]3-. Structural analysis of the TRXL data revealed that the excited state of [Ce(III)Cl6]3- has Ce-Cl bonds that are shorter than those of the ground state and that the Ce-Cl bond further contracts upon oxidation. In addition, this study represents the first application of TRXL to both photocatalyst-only and photocatalyst-and-substrate samples, providing insights into the substrate's influence on the photocatalyst's reaction dynamics. This study demonstrates the capability of TRXL in elucidating the reaction dynamics of photocatalysts under various conditions and highlights the importance of experimental determination of the structures of reaction intermediates to advance our understanding of photocatalytic mechanisms.

20.
ACS Appl Mater Interfaces ; 15(40): 46765-46774, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769116

RESUMEN

In this study, a stable solid electrolyte interface (SEI) and a Ag-Li alloy were formed through a simple slurry coating of silver (Ag) nanoparticles and Li nitrate (LiNO3) on a Li metal surface (AgLN-coated Li). The Ag-Li alloy has a high Li diffusion coefficient, which allowed the inward transfer of Li atoms, thus allowing Li to be deposited below the alloy. Moreover, the highly conductive SEI enabled the fast diffusion of Li ions corresponding to the alloy. This inward transfer resulted in dendrite suppression and improved the Coulombic efficiency (CE). The AgLN-coated Li exhibited an initial capacity retention >81% and CE > 99.7 ± 0.2% over 500 cycles at a discharge capacity of 2.3 mA h cm-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA