Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Mol Med ; 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39482538

RESUMEN

Several CC subfamily chemokines have been reported to regulate bone metabolism by affecting osteoblast or osteoclast differentiation. However, the role of monocyte chemotactic protein 3 (MCP-3), a CC chemokine, in bone remodeling is not well understood. Here, we show that MCP-3 regulates bone remodeling by promoting osteoblast differentiation and inhibiting osteoclast differentiation. In a Ccr3-dependent manner, MCP-3 promoted osteoblast differentiation by stimulating p38 phosphorylation and suppressed osteoclast differentiation by upregulating interferon beta. MCP-3 increased bone morphogenetic protein 2-induced ectopic bone formation, and mice with MCP-3-overexpressing osteoblast precursor cells presented increased bone mass. Moreover, MCP-3 exhibited therapeutic effects by abrogating receptor activator of nuclear factor kappa-B ligand-induced bone loss. Therefore, MCP-3 has therapeutic potential for diseases involving bone loss due to its positive role in osteoblast differentiation and negative role in osteoclast differentiation.

2.
Exp Mol Med ; 56(9): 1991-2001, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39218976

RESUMEN

Stanniocalcin 1 (STC1) is a calcium- and phosphate-regulating hormone that is expressed in all tissues, including bone tissues, and is involved in calcium and phosphate homeostasis. Previously, STC1 expression was found to be increased by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] administration in renal proximal tubular cells. In this study, we investigated whether STC1 directly regulates osteoblast differentiation or reciprocally controls the effects of 1,25(OH)2D3 on osteoblasts to contribute to bone homeostasis. We found that STC1 inhibited osteoblast differentiation in vitro and bone morphogenetic protein 2 (BMP2)-induced ectopic bone formation in vivo. Moreover, 1,25(OH)2D3 increased STC1 expression through direct binding to the Stc1 promoter of the vitamin D receptor (VDR). STC1 activated the 1,25(OH)2D3-VDR signaling pathway through the upregulation of VDR expression mediated by the inhibition of Akt phosphorylation in osteoblasts. STC1 further increased the effects of 1,25(OH)2D3 on receptor activator of nuclear factor-κB ligand (RANKL) secretion and inhibited osteoblast differentiation by exhibiting a positive correlation with 1,25(OH)2D3. The long-bone phenotype of transgenic mice overexpressing STC1 specifically in osteoblasts was not significantly different from that of wild-type mice. However, compared with that in the wild-type mice, 1,25(OH)2D3 administration significantly decreased bone mass in the STC1 transgenic mice. Collectively, these results suggest that STC1 negatively regulates osteoblast differentiation and bone formation; however, the inhibitory effect of STC1 on osteoblasts is transient and can be reversed under normal conditions. Nevertheless, the synergistic effect of STC1 and 1,25(OH)2D3 through 1,25(OH)2D3 administration may reduce bone mass by inhibiting osteoblast differentiation.


Asunto(s)
Calcificación Fisiológica , Calcitriol , Diferenciación Celular , Glicoproteínas , Osteoblastos , Receptores de Calcitriol , Animales , Ratones , Proteína Morfogenética Ósea 2/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Calcificación Fisiológica/genética , Calcitriol/farmacología , Diferenciación Celular/efectos de los fármacos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Ratones Transgénicos , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Osteogénesis/efectos de los fármacos , Regiones Promotoras Genéticas , Ligando RANK/metabolismo , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Transducción de Señal/efectos de los fármacos , Vitamina D/análogos & derivados , Humanos
3.
J Cell Physiol ; 239(6): e31268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577903

RESUMEN

Several members of the transforming growth factor beta (TGF-ß) superfamily regulate the proliferation, differentiation, and function of bone-forming osteoblasts and bone-resorbing osteoclasts. However, it is still unknown whether Nodal, a member of the TGF-ß superfamily, serves a function in bone cells. In this study, we found that Nodal did not have any function in osteoblasts but instead negatively regulated osteoclast differentiation. Nodal inhibited RANKL-induced osteoclast differentiation by downregulating the expression of pro-osteoclastogenic genes, including c-fos, Nfatc1, and Blimp1, and upregulating the expression of antiosteoclastogenic genes, including Bcl6 and Irf8. Nodal activated STAT1 in osteoclast precursor cells, and STAT1 downregulation significantly reduced the inhibitory effect of Nodal on osteoclast differentiation. These findings indicate that Nodal activates STAT1 to downregulate or upregulate the expression of pro-osteoclastogenic or antiosteoclastogenic genes, respectively, leading to the inhibition of osteoclast differentiation. Moreover, the inhibitory effect of Nodal on osteoclast differentiation contributed to the reduction of RANKL-induced bone loss in vivo.


Asunto(s)
Diferenciación Celular , Proteína Nodal , Osteoclastos , Factor de Transcripción STAT1 , Animales , Ratones , Resorción Ósea/metabolismo , Resorción Ósea/genética , Resorción Ósea/patología , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Fosforilación , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ligando RANK/metabolismo , Transducción de Señal , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Masculino , Ratones Endogámicos ICR , Proteína Nodal/genética , Proteína Nodal/metabolismo , Proteína Nodal/farmacología
4.
J Cell Physiol ; 239(2): e31171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38214098

RESUMEN

Human monocyte chemoattractant protein-1 (MCP-1) in mice has two orthologs, MCP-1 and MCP-5. MCP-1, which is highly expressed in osteoclasts rather than in osteoclast precursor cells, is an important factor in osteoclast differentiation. However, the roles of MCP-5 in osteoclasts are completely unknown. In this study, contrary to MCP-1, MCP-5 was downregulated during receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation and was considered an inhibitory factor in osteoclast differentiation. The inhibitory role of MCP-5 in osteoclast differentiation was closely related to the increase in Ccr5 expression and the inhibition of IκB degradation by RANKL. Transgenic mice expressing MCP-5 controlled by Mx-1 promoter exhibited an increased bone mass because of a decrease in osteoclasts. This result strongly supported that MCP-5 negatively regulated osteoclast differentiation. MCP-5 also prevented severe bone loss caused by RANKL.


Asunto(s)
Diferenciación Celular , Glicoproteínas de Membrana , Proteínas Quimioatrayentes de Monocitos , Osteoclastos , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos ICR , Proteínas Quimioatrayentes de Monocitos/genética , Proteínas Quimioatrayentes de Monocitos/metabolismo , Proteínas Quimioatrayentes de Monocitos/farmacología , FN-kappa B/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Ligando RANK/farmacología , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Regulación hacia Arriba
5.
Free Radic Biol Med ; 211: 77-88, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101586

RESUMEN

Sestrins are stress-responsive proteins with antioxidant properties. They participate in cellular redox balance and protect against oxidative damage. This study investigated the effects of Sestrin2 (Sesn2) on osteoclast differentiation and function. Overexpressing Sesn2 in osteoclast precursor cells significantly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis. This was assessed as reduced expression of various osteoclast markers, including c-Fos, nuclear factor of activated T cells 1 (NFATc1), osteoclast-associated receptor, tartrate-resistant acid phosphatase, and cathepsin K. Conversely, downregulation of Sesn2 produced the opposite effect. Mechanistically, Sesn2 overexpression enhanced AMPK activation and the nuclear translocation of nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2), promoting antioxidant enzymes. Moreover, azithromycin (Azm) induced Sesn2 expression, which suppressed RANKL-induced osteoclast differentiation. Specifically, Azm treatment reduced RANKL-induced production of reactive oxygen species in osteoclasts. Furthermore, intraperitoneal administration of Azm ameliorated RANKL-induced bone loss by reducing osteoclast activity in mice. Taken together, our results suggested that Azm-induced Sesn2 act as a negative regulator of RANKL-induced osteoclast differentiation through the AMPK/NFATc1 signaling pathway. Concisely, targeting Sesn2 can be a potential pharmacological intervention in osteoporosis.


Asunto(s)
Osteogénesis , Ligando RANK , Animales , Ratones , Osteogénesis/genética , Especies Reactivas de Oxígeno/metabolismo , Ligando RANK/genética , Ligando RANK/farmacología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Osteoclastos/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Diferenciación Celular
6.
Biomater Sci ; 11(7): 2581-2589, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36794531

RESUMEN

CrkII, a member of the adaptor protein family, is known to participate in bone homeostasis via the regulation of osteoclasts and osteoblasts. Therefore, silencing CrkII would beneficially impact the bone microenvironment. In this study, CrkII siRNA encapsulated by a bone-targeting peptide (AspSerSer)6-liposome was evaluated for its therapeutic applications using a receptor activator of nuclear factor kappa-B ligand (RANKL)-induced bone loss model. (AspSerSer)6-liposome-siCrkII maintained its gene-silencing ability in both osteoclasts and osteoblasts in vitro and significantly reduced osteoclast formation while increasing osteoblast differentiation in vitro. Fluorescence image analyses showed that the (AspSerSer)6-liposome-siCrkII was present largely in bone, where it remained present for up to 24 hours and was cleared by 48 hours, even when systemically administrated. Importantly, microcomputed-tomography revealed that bone loss induced by RANKL administration was recovered by systemic administration of (AspSerSer)6-liposome-siCrkII. Collectively, the findings of this study suggest that (AspSerSer)6-liposome-siCrkII is a promising therapeutic strategy for the development of treatments for bone diseases, as it overcomes the adverse effects derived from ubiquitous expression via bone-specific delivery of siRNA.


Asunto(s)
Enfermedades Óseas , Resorción Ósea , Humanos , Osteogénesis , ARN Interferente Pequeño/metabolismo , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/genética , Resorción Ósea/metabolismo , Liposomas/metabolismo , Osteoclastos , Osteoblastos , Enfermedades Óseas/metabolismo , Diferenciación Celular
7.
J Bone Metab ; 29(3): 165-174, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36153852

RESUMEN

BACKGROUND: Osteolysis is one of the most common problems that occurs after total hip and knee arthroplasty and has recently become a significant problem after total ankle arthroplasty (TAA). In this study, we investigated the role of LIM homeobox transcription factor 1-ß (Lmx1b) in osteoclast differentiation. By evaluating the expression profiles associated with osteolysis following TAA treatment, Lmx1b was found to be differentially expressed in patients with osteolysis after TAA. METHODS: To identify the important genes associated with osteolysis after TAA, RNA sequencing was performed by analyzing 8 patient samples: 5 primary TAA samples (control group) and 3 TAA samples revised for flexion instability (osteolysis group). By analyzing the differentially expressed genes and gene ontologies, Lmx1b expression was found to be upregulated in the osteolysis group compared to that in the control group. Focusing on the role of Lmx1b in bone cells, Lmx1b was overexpressed by a retrovirus in osteoclast precursor cells. The cultured cells were stained with tartrate-resistant acid phosphatase, and the expression of osteoclast-related genes was analyzed using real-time polymerase chain reaction. RESULTS: Lmx1b overexpression in osteoclast precursors suppresses osteoclast formation and resorptive activity. The expression of osteoclast marker genes was significantly reduced during osteoclast differentiation by Lmx1b overexpression. Furthermore, Lmx1b is associated with nuclear factor of activated T cells 1 (NFATc1) and inhibited NFATc1 translocation into the nucleus. CONCLUSIONS: These results provide novel insights into the anti-bone resorptive effect of Lmx1b on osteolysis after TAA and may lead to the development of effective preventative and therapeutic strategies for peri-implant osteolysis.

8.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743149

RESUMEN

Neurogenin 1 (Ngn1) belongs to the basic helix-loop-helix (bHLH) transcription factor family and plays important roles in specifying neuronal differentiation. The present study aimed to determine whether forced Ngn1 expression contributes to bone homeostasis. Ngn1 inhibited the p300/CREB-binding protein-associated factor (PCAF)-induced acetylation of nuclear factor of activated T cells 1 (NFATc1) and runt-related transcription factor 2 (Runx2) through binding to PCAF, which led to the inhibition of osteoclast and osteoblast differentiation, respectively. In addition, Ngn1 overexpression inhibited the TNF-α- and IL-17A-mediated enhancement of osteoclast differentiation and IL-17A-induced osteoblast differentiation. These findings indicate that Ngn1 can serve as a novel therapeutic agent for treating ankylosing spondylitis with abnormally increased bone formation and resorption.


Asunto(s)
Osteoclastos , Osteogénesis , Diferenciación Celular , Interleucina-17/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética
9.
Int J Mol Sci ; 23(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35563615

RESUMEN

The LIM-homeodomain transcription factor Lmx1b plays a key role in body pattern formation during development. Although Lmx1b is essential for the normal development of multiple tissues, its regulatory mechanism in bone cells remains unclear. Here, we demonstrated that Lmx1b negatively regulates bone morphogenic protein 2 (BMP2)-induced osteoblast differentiation. Overexpressed Lmx1b in the osteoblast precursor cells inhibited alkaline phosphatase (ALP) activity and nodule formation, as well as the expression of osteoblast maker genes, including runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alpl), bone sialoprotein (Ibsp), and osteocalcin (Bglap). Conversely, the knockdown of Lmx1b in the osteoblast precursors enhanced the osteoblast differentiation and function. Lmx1b physically interacted with and repressed the transcriptional activity of Runx2 by reducing the recruitment of Runx2 to the promoter region of its target genes. In vivo analysis of BMP2-induced ectopic bone formation revealed that the knockdown of Lmx1b promoted osteogenic differentiation and bone regeneration. Our data demonstrate that Lmx1b negatively regulates osteoblast differentiation and function through regulation of Runx2 and provides a molecular basis for therapeutic targets for bone diseases.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Factores de Transcripción , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Factores de Transcripción/metabolismo
10.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408860

RESUMEN

Activating transcription factor 3 (ATF3) has been identified as a negative regulator of osteoblast differentiation in in vitro study. However, it was not associated with osteoblast differentiation in in vivo study. To provide an understanding of the discrepancy between the in vivo and in vitro findings regarding the function of ATF3 in osteoblasts, we investigated the unidentified roles of ATF3 in osteoblast biology. ATF3 enhanced osteoprotegerin (OPG) production, not only in osteoblast precursor cells, but also during osteoblast differentiation and osteoblastic adipocyte differentiation. In addition, ATF3 increased nodule formation in immature osteoblasts and decreased osteoblast-dependent osteoclast formation, as well as the transdifferentiation of osteoblasts to adipocytes. However, all these effects were reversed by the OPG neutralizing antibody. Taken together, these results suggest that ATF3 contributes to bone homeostasis by regulating the differentiation of various cell types in the bone microenvironment, including osteoblasts, osteoclasts, and adipocytes via inducing OPG production.


Asunto(s)
Osteoclastos , Osteoprotegerina , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Adipocitos/metabolismo , Diferenciación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo
11.
BMB Rep ; 54(9): 482-487, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34488926

RESUMEN

Interferon regulatory factors (IRFs) play roles in various biological processes including cytokine signaling, cell growth regulation and hematopoietic development. Although it has been reported that several IRFs are involved in bone metabolism, the role of IRF2 in bone cells has not been elucidated. Here, we investigated the involvement of IRF2 in RANKL-induced osteoclast differentiation. IRF2 overexpression in osteoclast precursor cells enhanced osteoclast differentiation by regulating the expression of NFATc1, a master regulator of osteoclastogenesis. Conversely, IRF2 knockdown inhibited osteoclast differentiation and decreased the NFATc1 expression. Moreover, IRF2 increased the translocation of NF-κB subunit p65 to the nucleus in response to RANKL and subsequently induced the expression of NFATc1. IRF2 plays an important role in RANKL-induced osteoclast differentiation by regulating NF-κB/NFATc1 signaling pathway. Taken together, we demonstrated the molecular mechanism of IRF2 in osteoclast differentiation, and provide a molecular basis for potential therapeutic targets for the treatment of bone diseases characterized by excessive bone resorption. [BMB Reports 2021; 54(9): 482-487].


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Factor 2 Regulador del Interferón/metabolismo , Osteogénesis/efectos de los fármacos , Ligando RANK/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Núcleo Celular/metabolismo , Factor 2 Regulador del Interferón/antagonistas & inhibidores , Factor 2 Regulador del Interferón/genética , Masculino , Ratones , Ratones Endogámicos ICR , Factores de Transcripción NFATC/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factor de Transcripción ReIA/metabolismo
12.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209812

RESUMEN

Coupled signaling between bone-forming osteoblasts and bone-resorbing osteoclasts is crucial to the maintenance of bone homeostasis. We previously reported that v-crk avian sarcoma virus CT10 oncogene homolog-like (CrkL), which belongs to the Crk family of adaptors, inhibits bone morphogenetic protein 2 (BMP2)-mediated osteoblast differentiation, while enhancing receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation. In this study, we investigated whether CrkL can also regulate the coupling signals between osteoblasts and osteoclasts, facilitating bone homeostasis. Osteoblastic CrkL strongly decreased RANKL expression through its inhibition of runt-related transcription factor 2 (Runx2) transcription. Reduction in RANKL expression by CrkL in osteoblasts resulted in the inhibition of not only osteoblast-dependent osteoclast differentiation but also osteoclast-dependent osteoblast differentiation, suggesting that CrkL participates in the coupling signals between osteoblasts and osteoclasts via its regulation of RANKL expression. Therefore, CrkL bifunctionally regulates osteoclast differentiation through both a direct and indirect mechanism while it inhibits osteoblast differentiation through its blockade of both BMP2 and RANKL reverse signaling pathways. Collectively, these data suggest that CrkL is involved in bone homeostasis, where it helps to regulate the complex interactions of the osteoblasts, osteoclasts, and their coupling signals.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Remodelación Ósea/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos ICR , Osteoblastos/fisiología , Osteoclastos/fisiología , Osteogénesis/genética
13.
Exp Mol Med ; 53(5): 848-863, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33990690

RESUMEN

STAT5 is a transcription factor that is activated by various cytokines, hormones, and growth factors. Activated STAT5 is then translocated to the nucleus and regulates the transcription of target genes, affecting several biological processes. Several studies have investigated the role of STAT5 in adipogenesis, but unfortunately, its role in adipogenesis remains controversial. In the present study, we generated adipocyte-specific Stat5 conditional knockout (cKO) (Stat5fl/fl;Apn-cre) mice to investigate the role of STAT5 in the adipogenesis of bone marrow mesenchymal stem cells (BMSCs). BMSC adipogenesis was significantly inhibited upon overexpression of constitutively active STAT5A, while it was enhanced in the absence of Stat5 in vitro. In vivo adipose staining and histological analyses revealed increased adipose volume in the bone marrow of Stat5 cKO mice. ATF3 is the target of STAT5 during STAT5-mediated inhibition of adipogenesis, and its transcription is regulated by the binding of STAT5 to the Atf3 promoter. ATF3 overexpression was sufficient to suppress the enhanced adipogenesis of Stat5-deficient adipocytes, and Atf3 silencing abolished the STAT5-mediated inhibition of adipogenesis. Stat5 cKO mice exhibited reduced bone volume due to an increase in the osteoclast number, and coculture of bone marrow-derived macrophages with Stat5 cKO adipocytes resulted in enhanced osteoclastogenesis, suggesting that an increase in the adipocyte number may contribute to bone loss. In summary, this study shows that STAT5 is a negative regulator of BMSC adipogenesis and contributes to bone homeostasis via direct and indirect regulation of osteoclast differentiation; therefore, it may be a leading target for the treatment of both obesity and bone loss-related diseases.


Asunto(s)
Adipocitos/metabolismo , Huesos/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , Homeostasis , Células Madre Mesenquimatosas/metabolismo , Factor de Transcripción STAT5/metabolismo , Adipocitos/citología , Adipogénesis/genética , Animales , Huesos/diagnóstico por imagen , Huesos/patología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Osteogénesis/genética , Unión Proteica , Factor de Transcripción STAT5/genética , Transducción de Señal
14.
Mol Cells ; 43(1): 34-47, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31896234

RESUMEN

The circadian clock regulates various physiological processes, including bone metabolism. The nuclear receptors Reverbs, comprising Rev-erbα and Rev-erbß, play a key role as transcriptional regulators of the circadian clock. In this study, we demonstrate that Rev-erbs negatively regulate differentiation of osteoclasts and osteoblasts. The knockdown of Rev-erbα in osteoclast precursor cells enhanced receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation, as well as expression of nuclear factor of activated T cells 1 (NFATc1), osteoclast-associated receptor (OSCAR), and tartrate-resistant acid phosphatase (TRAP). The overexpression of Rev-erbα leads to attenuation of the NFATc1 expression via inhibition of recruitment of c-Fos to the NFATc1 promoter. The overexpression of Rev-erbα in osteoblast precursors attenuated the expression of osteoblast marker genes including Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OC). Rev-erbα interfered with the recruitment of Runx2 to the promoter region of the target genes. Conversely, knockdown of Reverbα in the osteoblast precursors enhanced the osteoblast differentiation and function. In addition, Rev-erbα negatively regulated osteoclast and osteoblast differentiation by suppressing the p38 MAPK pathway. Furthermore, intraperitoneal administration of GSK4112, a Rev-erb agonist, protects RANKL-induced bone loss via inhibition of osteoclast differentiation in vivo . Taken together, our results demonstrate a molecular mechanism of Rev-erbs in the bone remodeling, and provide a molecular basis for a potential therapeutic target for treatment of bone disease characterized by excessive bone resorption.


Asunto(s)
Resorción Ósea/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Osteoblastos/fisiología , Osteoclastos/fisiología , Osteogénesis/genética , Animales , Remodelación Ósea , Resorción Ósea/genética , Diferenciación Celular , Células Cultivadas , Relojes Circadianos , Modelos Animales de Enfermedad , Mutación con Ganancia de Función/genética , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , ARN Interferente Pequeño/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Exp Mol Med ; 51(9): 1-10, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554784

RESUMEN

The adaptor protein CrkII is involved in several biological activities, including mitogenesis, phagocytosis, and cytoskeleton reorganization. Previously, we demonstrated that CrkII plays an important role in osteoclast differentiation and function through Rac1 activation both in vitro and in vivo. In this study, we investigated whether CrkII also regulates the differentiation and function of another type of bone cells, osteoblasts. Overexpression of CrkII in primary osteoblasts inhibited bone morphogenetic protein (BMP) 2-induced osteoblast differentiation and function, whereas knockdown of CrkII expression exerted the opposite effect. Importantly, CrkII strongly enhanced c-Jun-N-terminal kinase (JNK) phosphorylation, and the CrkII overexpression-mediated attenuation of osteoblast differentiation and function was recovered by JNK inhibitor treatment. Furthermore, transgenic mice overexpressing CrkII under control of the alpha-1 type I collagen promoter exhibited a reduced bone mass phenotype. Together, these results indicate that CrkII negatively regulates osteoblast differentiation and function through JNK phosphorylation. Given that CrkII acts as a negative and positive regulator of osteoblast and osteoclast differentiation, respectively, the regulation of CrkII expression in bone cells may help to develop new strategies to enhance bone formation and inhibit bone resorption.


Asunto(s)
Resorción Ósea/genética , Neuropéptidos/genética , Osteogénesis/genética , Proteínas Proto-Oncogénicas c-crk/genética , Proteína de Unión al GTP rac1/genética , Animales , Proteína Morfogenética Ósea 2/genética , Resorción Ósea/patología , Diferenciación Celular/genética , Colágeno Tipo I , Cadena alfa 1 del Colágeno Tipo I , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Ratones , Ratones Transgénicos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Fosforilación , Transducción de Señal/genética
16.
BMB Rep ; 52(7): 469-474, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31186082

RESUMEN

Kruppel-like factor 2 (KLF2) has been implicated in the regulation of cell proliferation, differentiation, and survival in a variety of cells. Recently, it has been reported that KLF2 regulates the p65-mediated transactivation of NF-κB. Although the NF-κB pathway plays an important role in the differentiation of osteoclasts and osteoblasts, the role of KLF2 in these bone cells has not yet been fully elucidated. In this study, we demonstrated that KLF2 regulates osteoclast and osteoblast differentiation. The overexpression of KLF2 in osteoclast precursor cells inhibited osteoclast differentiation by downregulating c-Fos, NFATc1, and TRAP expression, while KLF2 overexpression in osteoblasts enhanced osteoblast differentiation and function by upregulating Runx2, ALP, and BSP expression. Conversely, the downregulation of KLF2 with KLF2-specific siRNA increased osteoclast differentiation and inhibited osteoblast differentiation. Moreover, the overexpression of interferon regulatory protein 2-binding protein 2 (IRF2BP2), a regulator of KLF2, suppressed osteoclast differentiation and enhanced osteoblast differentiation and function. These effects were reversed by downregulating KLF2. Collectively, our data provide new insights and evidence to suggest that the IRF2BP2/KLF2 axis mediates osteoclast and osteoblast differentiation, thereby affecting bone homeostasis. [BMB Reports 2019; 52(7): 469-474].


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Factores de Transcripción/metabolismo , Homeostasis , Humanos
17.
Bone ; 120: 432-438, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30557634

RESUMEN

Anoctamin 5 (Ano5) mutations are responsible for gnathodiaphyseal dysplasia, a rare skeletal syndrome. Despite the close linkage of Ano5 to bone remodeling, the molecular mechanisms underlying the role of Ano5 in bone remodeling remain unknown. In this study, we investigated whether Ano5 regulates osteoblast or osteoclast differentiation to maintain normal bone remodeling. Downregulation of Ano5 expression did not affect osteoblast differentiation and mineralization, while ectopic expression of Ano5 significantly enhanced receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation. Furthermore, Ano5-mediated Akt phosphorylation resulted in nuclear factor of activated T-cells c1 (NFATc1) activation, indicating that Ano5 regulates osteoclast differentiation through activation of the Akt-NFATc1 signaling pathway. Thus, our results suggest a possibility that Ano5 is involved in bone remodeling through regulating the function of osteoclasts rather than that of osteoblasts.


Asunto(s)
Anoctaminas/genética , Diferenciación Celular , Predisposición Genética a la Enfermedad , Osteoblastos/citología , Osteoclastos/citología , Osteogénesis Imperfecta/genética , Animales , Animales Recién Nacidos , Anoctaminas/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Factores de Transcripción NFATC/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
18.
Bone ; 113: 17-28, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29753717

RESUMEN

The tripartite motif protein 38 (TRIM38), a member of the TRIM family, is involved in various cellular processes such as cell proliferation, differentiation, apoptosis, and antiviral defense. However, the role of TRIM38 in osteoclast and osteoblast differentiation is not yet known. In this study, we report the involvement of TRIM38 in osteoclast and osteoblast differentiation. Overexpression of TRIM38, in osteoclast precursor cells, attenuated receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation, RANKL-triggered NF-κB activation, and expression of osteoclast marker genes, such as NFATc1, osteoclast-associated receptor (OSCAR), and tartrate-resistant acid phosphatase (TRAP); and down-regulation of TRIM38 expression showed the opposite effects. Ectopic expression of TRIM38 in osteoblast precursors induced increased osteoblast differentiation and function. Elevated expression of alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin was also observed due to blockade of NF-κB activation. Conversely, knockdown of TRIM38 showed the opposite effects. TRIM38 also induced degradation of lysosome-dependent transforming growth factor beta-activated kinase 1 and MAP3K7-binding protein 2 (TAB2), further blocking NF-κB activation. Taken together, our data suggest that TRIM38 plays a critical role in bone remodeling as a negative regulator of NF-κB in both osteoclast and osteoblast differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Remodelación Ósea/fisiología , Proteínas Portadoras/metabolismo , FN-kappa B/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Animales , Diferenciación Celular/fisiología , Masculino , Ratones , Ratones Endogámicos ICR , Osteoblastos/citología , Osteoclastos/citología , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
19.
J Immunol ; 200(7): 2455-2463, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29440352

RESUMEN

The non-receptor tyrosine kinase c-Src participates in bone metabolism by regulating the activities of both the bone-resorbing osteoclasts and bone-forming osteoblasts. In this study, we investigated whether megakaryocyte-associated tyrosine kinase (Matk), a potent inhibitor of c-Src, affects the functions of murine osteoclasts and osteoblasts. Results revealed that the formation of osteoclasts with actin rings was attenuated by Matk overexpression in osteoclast precursor cells but was enhanced by Matk knockdown. The inhibitory effect of Matk on osteoclasts was closely related with the inhibition of c-Src activity. Intriguingly, Matk overexpression in osteoblasts reduced bone nodule formation. Conversely, Matk knockdown increased osteoblast function. Most importantly, binding of Matk to Runx2 resulted in the inhibition of Runx2 translocation into the nucleus and downregulation of Runx2 target genes. Taken together, our findings demonstrated that Matk plays a critical role in bone metabolism by impairing the functions of osteoclasts and osteoblasts via distinct mechanisms involving inhibition of c-Src-dependent and -independent signaling pathways.


Asunto(s)
Desarrollo Óseo/fisiología , Resorción Ósea/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Huesos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones , Unión Proteica/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología
20.
J Immunol ; 200(5): 1661-1670, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29378912

RESUMEN

Endoplasmic reticulum (ER) stress is triggered by various metabolic factors, such as cholesterol and proinflammatory cytokines. Recent studies have revealed that ER stress is closely related to skeletal disorders, such as osteoporosis. However, the precise mechanism by which ER stress regulates osteoclast differentiation has not been elucidated. In this study, we identified an ER-bound transcription factor, cAMP response element-binding protein H (CREBH), as a downstream effector of ER stress during RANKL-induced osteoclast differentiation. RANKL induced mild ER stress and the simultaneous accumulation of active nuclear CREBH (CREBH-N) in the nucleus during osteoclastogenesis. Overexpression of CREBH-N in osteoclast precursors enhanced RANKL-induced osteoclast formation through NFATc1 upregulation. Inhibiting ER stress using a specific inhibitor attenuated the expression of osteoclast-related genes and CREBH activation. In addition, inhibition of reactive oxygen species using N-acetylcysteine attenuated ER stress, expression of osteoclast-specific marker genes, and RANKL-induced CREBH activation. Furthermore, inhibition of ER stress and CREBH signaling pathways using an ER stress-specific inhibitor or CREBH small interfering RNAs prevented RANKL-induced bone destruction in vivo. Taken together, our results suggest that reactive oxygen species/ER stress signaling-dependent CREBH activation plays an important role in RANKL-induced osteoclastogenesis. Therefore, inactivation of ER stress and CREBH signaling pathways may represent a new treatment strategy for osteoporosis.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Osteoclastos/metabolismo , Osteoclastos/fisiología , Osteogénesis/fisiología , Ligando RANK/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Estrés del Retículo Endoplásmico/fisiología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Activación Transcripcional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...