Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659928

RESUMEN

DNA double-strand breaks (DSBs) are nucleolytically processed to generate single-stranded DNA tails for homologous recombination. In Saccharomyces cerevisiae meiosis, this 5'-to-3' resection involves initial nicking by the Mre11-Rad50-Xrs2 complex (MRX) plus Sae2, then exonucleolytic digestion by Exo1. Chromatin remodeling adjacent to meiotic DSBs is thought to be necessary for resection, but the relevant remodeling activity was unknown. Here we show that the SWI/SNF-like ATPase Fun30 plays a major, non-redundant role in resecting meiotic DSBs. A fun30 null mutation shortened resection tract lengths almost as severely as an exo1-nd (nuclease-dead) mutation, and resection was further shortened in the fun30 exo1-nd double mutant. Fun30 associates with chromatin in response to meiotic DSBs, and the constitutive positioning of nucleosomes governs resection endpoint locations in the absence of Fun30. We infer that Fun30 directly promotes both the MRX- and Exo1-dependent steps in resection, possibly by removing nucleosomes from broken chromatids. Moreover, we found that the extremely short resection in the fun30 exo1-nd double mutant is accompanied by compromised interhomolog recombination bias, leading to defects in recombination and chromosome segregation. Thus, this study also provides insight about the minimal resection lengths needed for robust recombination.

2.
Nucleic Acids Res ; 52(7): 3794-3809, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38340339

RESUMEN

Meiotic recombination is initiated by programmed double-strand breaks (DSBs). Studies in Saccharomyces cerevisiae have shown that, following rapid resection to generate 3' single-stranded DNA (ssDNA) tails, one DSB end engages a homolog partner chromatid and is extended by DNA synthesis, whereas the other end remains associated with its sister. Then, after regulated differentiation into crossover- and noncrossover-fated types, the second DSB end participates in the reaction by strand annealing with the extended first end, along both pathways. This second-end capture is dependent on Rad52, presumably via its known capacity to anneal two ssDNAs. Here, using physical analysis of DNA recombination, we demonstrate that this process is dependent on direct interaction of Rad52 with the ssDNA binding protein, replication protein A (RPA). Furthermore, the absence of this Rad52-RPA joint activity results in a cytologically-prominent RPA spike, which emerges from the homolog axes at sites of crossovers during the pachytene stage of the meiotic prophase. Our findings suggest that this spike represents the DSB end of a broken chromatid caused by either the displaced leading DSB end or the second DSB end, which has been unable to engage with the partner homolog-associated ssDNA. These and other results imply a close correspondence between Rad52-RPA roles in meiotic recombination and mitotic DSB repair.


Asunto(s)
Intercambio Genético , Roturas del ADN de Doble Cadena , Meiosis , Proteína Recombinante y Reparadora de ADN Rad52 , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Recombinación Genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Recombinación Homóloga/genética
3.
J Microbiol ; 61(11): 939-951, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38082069

RESUMEN

Meiosis is a process through which diploid cells divide into haploid cells, thus promoting genetic diversity. This diversity arises from the formation of genetic crossovers (COs) that repair DNA double-strand breaks (DSBs), through homologous recombination (HR). Deficiencies in HR can lead to chromosomal abnormality resulting from chromosomal nondisjunction, and genetic disorders. Therefore, investigating the mechanisms underlying effective HR is crucial for reducing genome instability. Budding yeast serves as an ideal model for studying HR mechanisms due to its amenability to gene modifications and the ease of inducing synchronized meiosis to yield four spores. During meiosis, at the DNA level, programmed DSBs are repaired as COs or non-crossovers (NCOs) through structural alterations in the nascent D-loop, involving single-end invasions (SEIs) and double-Holliday junctions (dHJs). This repair occurs using homologous templates rather than sister templates. This protocol, using Southern blotting, allows for the analysis and monitoring of changes in DNA structures in the recombination process. One-dimensional (1D) gel electrophoresis is employed to detect DSBs, COs, and NCOs, while two-dimensional (2D) gel electrophoresis is utilized to identify joint molecules (JMs). Therefore, physical analysis is considered the most effective method for investigating the HR mechanism. Our protocol provides more comprehensive information than previous reports by introducing conditions for obtaining a greater number of cells from synchronized yeast and a method that can analyze not only meiotic/mitotic recombination but also mitotic replication.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Roturas del ADN de Doble Cadena , Meiosis , Recombinación Homóloga , ADN
4.
Genome Biol ; 23(1): 70, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241136

RESUMEN

BACKGROUND: Cohesin is a chromosome-associated SMC-kleisin complex that mediates sister chromatid cohesion, recombination, and most chromosomal processes during mitosis and meiosis. However, it remains unclear whether meiosis-specific cohesin complexes are functionally active in mitotic chromosomes. RESULTS: Through high-resolution 3D-structured illumination microscopy (3D-SIM) and functional analyses, we report multiple biological processes associated with the meiosis-specific cohesin components, α-kleisin REC8 and STAG3, and the distinct loss of function of meiotic cohesin during the cell cycle of embryonic stem cells (ESCs). First, we show that STAG3 is required for the efficient localization of REC8 to the nucleus by interacting with REC8. REC8-STAG3-containing cohesin regulates topological properties of chromosomes and maintains sister chromatid cohesion. Second, REC8-cohesin has additional sister chromatid cohesion roles in concert with mitotic RAD21-cohesin on ESC chromosomes. SIM imaging of REC8 and RAD21 co-staining revealed that the two types of α-kleisin subunits exhibited distinct loading patterns along ESC chromosomes. Third, knockdown of REC8 or RAD21-cohesin not only leads to higher rates of premature sister chromatid separation and delayed replication fork progression, which can cause proliferation and developmental defects, but also enhances chromosome compaction by hyperloading of retinoblastoma protein-condensin complexes from the prophase onward. CONCLUSIONS: Our findings indicate that the delicate balance between mitotic and meiotic cohesins may regulate ESC-specific chromosomal organization and the mitotic program.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona , Cromosomas , Células Madre Embrionarias/metabolismo , Meiosis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cohesinas
5.
Nucleic Acids Res ; 49(13): 7537-7553, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34197600

RESUMEN

The synaptonemal complex (SC) is a proteinaceous structure that mediates homolog engagement and genetic recombination during meiosis. In budding yeast, Zip-Mer-Msh (ZMM) proteins promote crossover (CO) formation and initiate SC formation. During SC elongation, the SUMOylated SC component Ecm11 and the Ecm11-interacting protein Gmc2 facilitate the polymerization of Zip1, an SC central region component. Through physical recombination, cytological, and genetic analyses, we found that ecm11 and gmc2 mutants exhibit chromosome-specific defects in meiotic recombination. CO frequencies on a short chromosome (chromosome III) were reduced, whereas CO and non-crossover frequencies on a long chromosome (chromosome VII) were elevated. Further, in ecm11 and gmc2 mutants, more double-strand breaks (DSBs) were formed on a long chromosome during late prophase I, implying that the Ecm11-Gmc2 (EG) complex is involved in the homeostatic regulation of DSB formation. The EG complex may participate in joint molecule (JM) processing and/or double-Holliday junction resolution for ZMM-dependent CO-designated recombination. Absence of the EG complex ameliorated the JM-processing defect in zmm mutants, suggesting a role for the EG complex in suppressing ZMM-independent recombination. Our results suggest that the SC central region functions as a compartment for sequestering recombination-associated proteins to regulate meiosis specificity during recombination.


Asunto(s)
Proteínas de Ciclo Celular/genética , Intercambio Genético , Roturas del ADN de Doble Cadena , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejo Sinaptonémico/metabolismo , Cromosomas Fúngicos , Replicación del ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Retroalimentación Fisiológica , Eliminación de Gen , Recombinación Genética , Saccharomyces cerevisiae/genética , Temperatura , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
6.
Nucleic Acids Res ; 47(22): 11691-11708, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31617566

RESUMEN

We have explored the meiotic roles of cohesin modulators Pds5 and Rad61/Wapl, in relation to one another, and to meiotic kleisin Rec8, for homolog pairing, all physically definable steps of recombination, prophase axis length and S-phase progression, in budding yeast. We show that Pds5 promotes early steps of recombination and thus homolog pairing, and also modulates axis length, with both effects independent of a sister chromatid. [Pds5+Rec8] promotes double-strand break formation, maintains homolog bias for crossover formation and promotes S-phase progression. Oppositely, the unique role of Rad61/Wapl is to promote non-crossover recombination by releasing [Pds5+Rec8]. For this effect, Rad61/Wapl probably acts to maintain homolog bias by preventing channeling into sister interactions. Mysteriously, each analyzed molecule has one role that involves neither of the other two. Overall, the presented findings suggest that Pds5's role in maintenance of sister chromatid cohesion during the mitotic prophase-analogous stage of G2/M is repurposed during meiosis prophase to promote interactions between homologs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Emparejamiento Cromosómico , Meiosis , Recombinación Genética/fisiología , Fase S/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Emparejamiento Cromosómico/genética , Segregación Cromosómica , Cromosomas Fúngicos , Meiosis/genética , Organismos Modificados Genéticamente , Unión Proteica , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas/genética
7.
Exp Mol Med ; 50(8): 1-12, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154456

RESUMEN

An important event enabling meiotic prophase I to proceed is the close juxtaposition of conjoined chromosome axes of homologs and their assembly via an array of transverse filaments and meiosis-specific axial elements into the synaptonemal complex (SC). During meiosis, recombination requires the establishment of a platform for recombinational interactions between the chromosome axes and their subsequent stabilization. This is essential for ensuring crossover recombination and proper segregation of homologous chromosomes. Thus, well-established SCs are essential for supporting these processes. The regulation of recombination intermediates on the chromosome axis/SC and dynamic positioning of double-strand breaks are not well understood. Here, using super-resolution microscopy (structured illumination microscopy), we determined the localization of the replication protein A (RPA) complex on the chromosome axes in the early phase of leptonema/zygonema and within the CEs of SC in the pachynema during meiotic prophase in mouse spermatocytes. RPA, which marks the intermediate steps of pairing and recombination, appears in large numbers and is positioned on the chromosome axes at the zygonema. In the pachynema, RPA foci are reduced but do not completely disappear; instead, they are placed between lateral elements. Our results reveal the precise structure of SC and localization dynamics of recombination intermediates on meiocyte chromosomes undergoing homolog pairing and meiotic recombination.


Asunto(s)
Cromosomas de los Mamíferos/genética , Imagenología Tridimensional , Mamíferos/metabolismo , Meiosis , Microscopía/métodos , Proteína de Replicación A/metabolismo , Animales , Arabidopsis/ultraestructura , Emparejamiento Cromosómico , Cromosomas de las Plantas/ultraestructura , Reparación del ADN , Histonas/metabolismo , Ratones Endogámicos C57BL , Polimerizacion , Complejo Sinaptonémico
8.
Mol Ther ; 26(4): 1154-1165, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29503196

RESUMEN

Homologous recombination (HR), which ensures accurate DNA replication and strand-break repair, is necessary to preserve embryonic stem cell (ESC) self-renewal. However, little is known about how HR factors modulate ESC differentiation and replication stress-associated DNA breaks caused by unique cell-cycle progression. Here, we report that ESCs utilize Rad51-dependent HR to enhance viability and induce rapid proliferation through a replication-coupled pathway. In addition, ESC differentiation was shown to be enhanced by ectopic expression of a subset of recombinases. Abundant expression of HR proteins throughout the ESC cycle, but not during differentiation, facilitated immediate HR-mediated repair of single-stranded DNA (ssDNA) gaps incurred during S-phase, via a mechanism that does not perturb cellular progression. Intriguingly, combined ectopic expression of two recombinases, Rad51 and Rad52, resulted in efficient ESC differentiation and diminished cell death, indicating that HR factors promote cellular differentiation by repairing global DNA breaks induced by chromatin remodeling signals. Collectively, these findings provide insight into the role of key HR factors in rapid DNA break repair following chromosome duplication during self-renewal and differentiation of ESCs.


Asunto(s)
Diferenciación Celular/genética , Expresión Génica Ectópica , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Recombinación Homóloga , Proteína Recombinante y Reparadora de ADN Rad52/genética , Animales , Biomarcadores , Ciclo Celular/genética , Línea Celular , Autorrenovación de las Células , Cromatina/genética , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Ratones
9.
Mutat Res ; 809: 70-80, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28693746

RESUMEN

Homologous recombination (HR) is essential for ensuring proper segregation of chromosomes in the first round of meiotic division. HR is also crucial for preserving genomic integrity of somatic cells due to its ability to rescue collapsed replication forks and eliminate deleterious DNA lesions, such as double-strand breaks (DSBs), interstrand crosslinks, and single-strand DNA gaps. Here, we review the early steps of HR (homology search and strand exchange), focusing on the roles of the two ends of a DSB. A detailed overview of the basic HR machinery and its mechanism for template selection and capture of duplex DNA via strand exchange is provided. Roles of proteins involved in these steps are discussed in both mitotic and meiotic HR. Central to this review is the hypothesis, which suggests that in meiosis, HR begins with a symmetrical DSB, but the symmetry is quickly lost with the two ends assuming different roles; it argues that this disparity of the two ends is essential for regulation of HR in meiosis and successful production of haploid gametes. We also propose a possible evolutionary reason for the asymmetry of the ends in HR.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Inestabilidad Genómica/fisiología , Recombinación Homóloga/fisiología , Meiosis/fisiología , Mitosis/fisiología , Animales , Células Germinativas/metabolismo , Humanos
10.
Sci Rep ; 7(1): 11610, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912486

RESUMEN

Embryonic stem (ES) cells require homologous recombination (HR) to cope with genomic instability caused during self-renewal. Here, we report expression dynamics and localization of endogenous HR factors in DNA break repair of ES cells. In addition, we analyzed gene expression patterns of HR-related factors at the transcript level with RNA-sequencing experiments. We showed that ES cells constitutively expressed diverse HR proteins throughout the cell cycle and that HR protein expression was not significantly changed even in the DNA damaging conditions. We further analyzed that depleting Rad51 resulted in the accumulation of larger single-stranded DNA (ssDNA) gaps, but did not perturb DNA replication, indicating that ES cells were able to enter the G2-phase in the presence of unrepaired DNA gaps, consistent with the possibility that post-replication repair helps avoid stalling at the G2/M checkpoint. Interestingly, caffeine treatment inhibited the formation of Rad51 or Rad54 foci, but not the formation of γH2AX and Exo1 foci, which led to incomplete HR in ssDNA, thus increasing DNA damage sensitivity. Our results suggested that ES cells possess conserved HR-promoting machinery to ensure effective recruitment of the HR proteins to DNA breaks, thereby driving proper chromosome duplication and cell cycle progression in ES cells.


Asunto(s)
Reparación del ADN , Replicación del ADN , Recombinación Homóloga , Células Madre Embrionarias de Ratones/metabolismo , Animales , Biomarcadores , Ciclo Celular/genética , Daño del ADN , ADN Helicasas/metabolismo , Ratones , Recombinasa Rad51/metabolismo
11.
Mol Cells ; 40(2): 143-150, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28190324

RESUMEN

Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.


Asunto(s)
Daño del ADN , ADN Helicasas/genética , Proteínas Nucleares/genética , Recombinasa Rad51/genética , Ciclo Celular/genética , División Celular/genética , ADN Helicasas/biosíntesis , Proteínas de Unión al ADN , Fase G2/genética , Células HeLa , Recombinación Homóloga , Humanos , Proteínas Nucleares/biosíntesis , Recombinasa Rad51/biosíntesis , Estrés Fisiológico/genética
12.
Nucleic Acids Res ; 44(19): 9296-9314, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27484478

RESUMEN

Rec8 is a prominent component of the meiotic prophase chromosome axis that mediates sister chromatid cohesion, homologous recombination and chromosome synapsis. Here, we explore the prophase roles of Rec8. (i) During the meiotic divisions, Rec8 phosphorylation mediates its separase-mediated cleavage. We show here that such cleavage plays no detectable role for chromosomal events of prophase. (ii) We have analyzed in detail three rec8 phospho-mutants, with 6, 24 or 29 alanine substitutions. A distinct 'separation of function' phenotype is revealed. In the mutants, axis formation and recombination initiation are normal, as is non-crossover recombination; in contrast, crossover (CO)-related events are defective. Moreover, the severities of these defects increase coordinately with the number of substitution mutations, consistent with the possibility that global phosphorylation of Rec8 is important for these effects. (iii) We have analyzed the roles of three kinases that phosphorylate Rec8 during prophase. Timed inhibition of Dbf4-dependent Cdc7 kinase confers defects concordant with rec8 phospho-mutant phenotypes. Inhibition of Hrr25 or Cdc5/polo-like kinase does not. Our results suggest that Rec8's prophase function, independently of cohesin cleavage, contributes to CO-specific events in conjunction with the maintenance of homolog bias at the leptotene/zygotene transition of meiotic prophase.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Estructuras Cromosómicas , Intercambio Genético , Mitosis/genética , Profase/genética , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alelos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Mapeo Cromosómico , Roturas del ADN de Doble Cadena , División del ADN , MAP Quinasa Quinasa 1/metabolismo , Complejos Multiproteicos , Mutación , Fenotipo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Nucleic Acids Res ; 44(7): 3190-203, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26825462

RESUMEN

Meiosis-specific cohesin, required for the linking of the sister chromatids, plays a critical role in various chromosomal events during meiotic prophase I, such as chromosome morphogenesis and dynamics, as well as recombination. Rad61/Wpl1 (Wapl in other organisms) negatively regulates cohesin functions. In this study, we show that meiotic chromosome axes are shortened in the budding yeast rad61/wpl1 mutant, suggesting that Rad61/Wpl1 negatively regulates chromosome axis compaction. Rad61/Wpl1 is required for efficient resolution of telomere clustering during meiosis I, indicating a positive effect of Rad61/Wpl1 on the cohesin function required for telomere dynamics. Additionally, we demonstrate distinct activities of Rad61/Wpl1 during the meiotic recombination, including its effects on the efficient processing of intermediates. Thus, Rad61/Wpl1 both positively and negatively regulates various cohesin-mediated chromosomal processes during meiosis.


Asunto(s)
Cromosomas Fúngicos , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Mutación , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero
14.
PLoS One ; 10(5): e0124152, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25938495

RESUMEN

Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer.


Asunto(s)
Variación Genética , Recombinación Homóloga/genética , Saccharomyces cerevisiae/genética , Alelos , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Viabilidad Microbiana , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/fisiología
15.
Nature ; 511(7511): 551-6, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25043020

RESUMEN

Spatial patterning is a ubiquitous feature of biological systems. Meiotic crossovers provide an interesting example, defined by the classic phenomenon of crossover interference. Here we identify a molecular pathway for interference by analysing crossover patterns in budding yeast. Topoisomerase II plays a central role, thus identifying a new function for this critical molecule. SUMOylation (of topoisomerase II and axis component Red1) and ubiquitin-mediated removal of SUMOylated proteins are also required. The findings support the hypothesis that crossover interference involves accumulation, relief and redistribution of mechanical stress along the protein/DNA meshwork of meiotic chromosome axes, with topoisomerase II required to adjust spatial relationships among DNA segments.


Asunto(s)
Intercambio Genético/genética , Meiosis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Mutación/genética , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación
16.
Mol Cell ; 51(4): 440-53, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973374

RESUMEN

Recombinational repair of spontaneous double-strand breaks (DSBs) exhibits sister bias. DSB-initiated meiotic recombination exhibits homolog bias. Physical analysis in yeast reveals that, in both cases, the recombination reaction intrinsically gives homolog bias. From this baseline default, cohesin intervenes to confer sister bias, likely independent of cohesion. In meiosis, cohesin's sister-biasing effect is counteracted by RecA homolog Rad51 and its mediators, plus meiotic RecA homolog Dmc1, which thereby restore intrinsic homolog bias. Meiotic axis complex Red1/Mek1/Hop1 participates by cleanly switching recombination from mitotic to meiotic mode, concomitantly activating Dmc1. We propose that a Rad51/DNA filament at one DSB end captures the intact sister, creating an anchor pad. This filament extends across the DSB site on the intact partner, precluding intersister strand exchange, thus forcing use of the homolog. Cohesin and Dmc1 interactively modulate this extension, with program-appropriate effects. In accord with this model, Rad51-mediated recombination in vivo requires the presence of a sister.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Reparación del ADN/genética , Recombinación Homóloga/genética , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , ADN de Hongos/análisis , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Mutación/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
17.
Proc Natl Acad Sci U S A ; 108(50): 20036-41, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22123968

RESUMEN

Meiotic recombination initiates via programmed double-strand breaks (DSBs). We investigate whether, at a given initiation site, DSBs occur independently among the four available chromatids. For a single DSB "hot spot", the proportions of nuclei exhibiting zero, one, or two (or more) observable events were defined by tetrad analysis and compared with those predicted by different DSB distribution scenarios. Wild-type patterns are incompatible with independent distribution of DSBs among the four chromatids. In most or all nuclei, DSBs occur one-per-pair of chromatids, presumptively sisters. In many nuclei, only one DSB occurs per four chromatids, confirming the existence of trans inhibition where a DSB on one chromosome interactively inhibits DSB formation on the partner chromosome. Several mutants exhibit only a one-per-pair constraint, a phenotype we propose to imply loss of trans inhibition. Signal transduction kinases Mec1 (ATR) and Tel1 (ATM) exhibit this phenotype and thus could be mediators of this effect. Spreading trans inhibition can explain even spacing of total recombinational interactions and implies that establishment of interhomolog interactions and DSB formation are homeostatic processes. The two types of constraints on DSB formation provide two different safeguards against recombination failure during meiosis.


Asunto(s)
Cromátides/metabolismo , Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meiosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Modelos Genéticos , Mutación/genética , Recombinación Genética/genética
18.
Cell ; 143(6): 924-37, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21145459

RESUMEN

Meiotic double-strand break (DSB)-initiated recombination must occur between homologous maternal and paternal chromosomes ("homolog bias"), even though sister chromatids are present. Through physical recombination analyses, we show that sister cohesion, normally mediated by meiotic cohesin Rec8, promotes "sister bias"; that meiosis-specific axis components Red1/Mek1kinase counteract this effect, thereby satisfying an essential precondition for homolog bias; and that other components, probably recombinosome-related, directly ensure homolog partner selection. Later, Rec8 acts positively to ensure maintenance of bias. These complexities mirror opposing dictates for global sister cohesion versus local separation and differentiation of sisters at recombination sites. Our findings support DSB formation within axis-tethered recombinosomes containing both sisters and ensuing programmed sequential release of "first" and "second" DSB ends. First-end release would create a homology-searching "tentacle." Rec8 and Red1/Mek1 also independently license recombinational progression and abundantly localize to different domains. These domains could comprise complementary environments that integrate inputs from DSB repair and mitotic chromosome morphogenesis into the complete meiotic program.


Asunto(s)
Intercambio Genético , Meiosis , Saccharomyces cerevisiae/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , MAP Quinasa Quinasa 1/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Intercambio de Cromátides Hermanas
19.
PLoS Genet ; 4(9): e1000188, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18818741

RESUMEN

Chromosome movements are a general feature of mid-prophase of meiosis. In budding yeast, meiotic chromosomes exhibit dynamic movements, led by nuclear envelope (NE)-associated telomeres, throughout the zygotene and pachytene stages. Zygotene motion underlies the global tendency for colocalization of NE-associated chromosome ends in a "bouquet." In this study, we identify Csm4 as a new molecular participant in these processes and show that, unlike the two previously identified components, Ndj1 and Mps3, Csm4 is not required for meiosis-specific telomere/NE association. Instead, it acts to couple telomere/NE ensembles to a force generation mechanism. Mutants lacking Csm4 and/or Ndj1 display the following closely related phenotypes: (i) elevated crossover (CO) frequencies and decreased CO interference without abrogation of normal pathways; (ii) delayed progression of recombination, and recombination-coupled chromosome morphogenesis, with resulting delays in the MI division; and (iii) nondisjunction of homologs at the MI division for some reason other than absence of (the obligatory) CO(s). The recombination effects are discussed in the context of a model where the underlying defect is chromosome movement, the absence of which results in persistence of inappropriate chromosome relationships that, in turn, results in the observed mutant phenotypes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/genética , Meiosis , Proteínas de la Membrana/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telómero/genética , Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Cruzamientos Genéticos , Proteínas de la Membrana/genética , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complejo Shelterina , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...