Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766096

RESUMEN

Collagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis. Notably, we differentiate the processes of collagen secretion and fibril assembly and identify the crucial involvement of endocytosis in regulating fibril formation. By employing Col1a1 knockout fibroblasts we demonstrate the incorporation of exogenous collagen into nucleation sites at the plasma membrane through these recycling mechanisms. Our study sheds light on the assembly process and its regulation in health and disease. Mass spectrometry data are available via ProteomeXchange with identifier PXD036794.

2.
J Pathol ; 262(4): 505-516, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38332727

RESUMEN

Pulmonary fibrosis, especially idiopathic pulmonary fibrosis (IPF), portends significant morbidity and mortality, and current therapeutic options are suboptimal. We have previously shown that type I collagen signaling through discoidin domain receptor 2 (DDR2), a receptor tyrosine kinase expressed by fibroblasts, is critical for the regulation of fibroblast apoptosis and progressive fibrosis. However, the downstream signaling pathways for DDR2 remain poorly defined and could also be attractive potential targets for therapy. A recent phosphoproteomic approach indicated that PIK3C2α, a poorly studied member of the PI3 kinase family, could be a downstream mediator of DDR2 signaling. We hypothesized that collagen I/DDR2 signaling through PIK3C2α regulates fibroblast activity during progressive fibrosis. To test this hypothesis, we found that primary murine fibroblasts and IPF-derived fibroblasts stimulated with endogenous or exogenous type I collagen led to the formation of a DDR2/PIK3C2α complex, resulting in phosphorylation of PIK3C2α. Fibroblasts treated with an inhibitor of PIK3C2α or with deletion of PIK3C2α had fewer markers of activation after stimulation with TGFß and more apoptosis after stimulation with a Fas-activating antibody. Finally, mice with fibroblast-specific deletion of PIK3C2α had less fibrosis after bleomycin treatment than did littermate control mice with intact expression of PIK3Cα. Collectively, these data support the notion that collagen/DDR2/PIK3C2α signaling is critical for fibroblast function during progressive fibrosis, making this pathway a potential target for antifibrotic therapy. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Receptor con Dominio Discoidina 2 , Fibrosis Pulmonar Idiopática , Ratones , Animales , Receptor con Dominio Discoidina 2/genética , Receptor con Dominio Discoidina 2/metabolismo , Colágeno Tipo I/metabolismo , Fibroblastos/patología , Colágeno/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Receptores con Dominio Discoidina/metabolismo , Pulmón/patología
3.
Respir Res ; 24(1): 314, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098035

RESUMEN

Recent data from human studies and animal models have established roles for type II alveolar epithelial cell (AEC2) injury/apoptosis and monocyte/macrophage accumulation and activation in progressive lung fibrosis. Although the link between these processes is not well defined, we have previously shown that CD36-mediated uptake of apoptotic AEC2s by lung macrophages is sufficient to drive fibrosis. Importantly, apoptotic AEC2s are rich in oxidized phospholipids (oxPL), and amongst its multiple functions, CD36 serves as a scavenger receptor for oxPL. Recent studies have established a role for oxPLs in alveolar scarring, and we hypothesized that uptake and accrual of oxPL by CD36 would cause a macrophage phenotypic change that promotes fibrosis. To test this hypothesis, we treated wild-type and CD36-null mice with the oxPL derivative oxidized phosphocholine (POVPC) and found that CD36-null mice were protected from oxPL-induced scarring. Compared to WT mice, fewer macrophages accumulated in the lungs of CD36-null animals, and the macrophages exhibited a decreased accumulation of intracellular oxidized lipid. Importantly, the attenuated accrual of oxPL in CD36-null macrophages was associated with diminished expression of the profibrotic mediator, TGFß. Finally, the pathway linking oxPL uptake and TGFß expression was found to require CD36-mediated activation of Lyn kinase. Together, these observations elucidate a causal pathway that connects AEC2 injury with lung macrophage activation via CD36-mediated uptake of oxPL and suggest several potential therapeutic targets.


Asunto(s)
Fibrosis Pulmonar , Ratones , Humanos , Animales , Fibrosis Pulmonar/metabolismo , Fosfolípidos/metabolismo , Cicatriz/metabolismo , Macrófagos/metabolismo , Ratones Noqueados , Fibrosis , Factor de Crecimiento Transformador beta/metabolismo
4.
Nat Cell Biol ; 25(10): 1415-1425, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37798545

RESUMEN

Bone marrow endothelial cells (BMECs) play a key role in bone formation and haematopoiesis. Although recent studies uncovered the cellular taxonomy of stromal compartments in the bone marrow (BM), the complexity of BMECs is not fully characterized. In the present study, using single-cell RNA sequencing, we defined a spatial heterogeneity of BMECs and identified a capillary subtype, termed type S (secondary ossification) endothelial cells (ECs), exclusively existing in the epiphysis. Type S ECs possessed unique phenotypic characteristics in terms of structure, plasticity and gene expression profiles. Genetic experiments showed that type S ECs atypically contributed to the acquisition of bone strength by secreting type I collagen, the most abundant bone matrix component. Moreover, these cells formed a distinct reservoir for haematopoietic stem cells. These findings provide the landscape for the cellular architecture in the BM vasculature and underscore the importance of epiphyseal ECs during bone and haematopoietic development.


Asunto(s)
Médula Ósea , Células Endoteliales , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células de la Médula Ósea , Epífisis
5.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L342-L351, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489274

RESUMEN

Progressive pulmonary fibrosis is a devastating condition and current treatment is suboptimal. There has been considerable interest in the role of tyrosine kinase signaling as mediators of pro- and antifibrotic processes. Nintedanib is a nonspecific tyrosine kinase that has been shown to have therapeutic benefit in lung fibrosis. However, the precise mechanism of action remains unclear because nintedanib inhibits several tyrosine kinases, which are often expressed on multiple cell types with different activities during fibrosis. Discoidin domain receptor 2 (DDR2) has been suggested as a potential target of nintedanib. DDR2 is a receptor tyrosine kinase that is activated by fibrillar collagens such as type I collagen. DDR2 is primarily expressed by fibroblasts. The effectiveness of specifically targeting DDR2 signaling during fibrosis remains undefined. In the present study, we show that nintedanib acts as a direct and indirect inhibitor of DDR2. We then utilize a novel allosteric inhibitor of DDR2, WRG-28, which blocks ligand binding and activation of DDR2. We find that WRG-28 augments fibroblast apoptosis and attenuates fibrosis. Finally, we show that fibroblast type I collagen autocrine signaling is regulated by DDR2 through both kinase-dependent and kinase-independent functions of DDR2. These findings highlight the importance of type I collagen autocrine signaling by fibroblasts during fibrosis and demonstrate that DDR2 has a central role in this pathway making it a potential therapeutic target.NEW & NOTEWORTHY Type I collagen is a major component of fibrosis and can signal through cell surface receptors such as discoidin domain receptor 2 (DDR2). DDR2 activation can lead to further collagen deposition by fibroblasts setting up a profibrotic positive feedback loop. In this report, we find that inhibition of DDR2 with nintedanib or a specific DDR2 inhibitor, WRG-28, can disrupt this cycle and prevent fibrosis through augmented fibroblast apoptosis and inhibited activation.


Asunto(s)
Receptor con Dominio Discoidina 2 , Humanos , Receptor con Dominio Discoidina 2/metabolismo , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Fibrosis
6.
Am J Respir Cell Mol Biol ; 67(4): 459-470, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35895592

RESUMEN

CD55 or decay accelerating factor (DAF), a ubiquitously expressed glycosylphosphatidylinositol (GPI)-anchored protein, confers a protective threshold against complement dysregulation which is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Since lung fibrosis is associated with downregulation of DAF, we hypothesize that overexpression of DAF in fibrosed lungs will limit fibrotic injury by restraining complement dysregulation. Normal primary human alveolar type II epithelial cells (AECs) exposed to exogenous complement 3a or 5a, and primary AECs purified from IPF lungs demonstrated decreased membrane-bound DAF expression with concurrent increase in the endoplasmic reticulum (ER) stress protein, ATF6. Increased loss of extracellular cleaved DAF fragments was detected in normal human AECs exposed to complement 3a or 5a, and in lungs of IPF patients. C3a-induced ATF6 expression and DAF loss was inhibited using pertussis toxin (an enzymatic inactivator of G-protein coupled receptors), in murine AECs. Treatment with soluble DAF abrogated tunicamycin-induced C3a secretion and ER stress (ATF6 and BiP expression) and restored epithelial cadherin. Bleomycin-injured fibrotic mice subjected to lentiviral overexpression of DAF demonstrated diminished levels of local collagen deposition and complement activation. Further analyses showed diminished release of DAF fragments, as well as reduction in apoptosis (TUNEL and caspase 3/7 activity), and ER stress-related transcripts. Loss-of-function studies using Daf1 siRNA demonstrated worsened lung fibrosis detected by higher mRNA levels of Col1a1 and epithelial injury-related Muc1 and Snai1, with exacerbated local deposition of C5b-9. Our studies provide a rationale for rescuing fibrotic lungs via DAF induction that will restrain complement dysregulation and lung injury.


Asunto(s)
Fibrosis Pulmonar Idiopática , Lesión Pulmonar , Animales , Bleomicina , Antígenos CD55/genética , Antígenos CD55/metabolismo , Cadherinas , Caspasa 3/metabolismo , Complemento C3a , Complejo de Ataque a Membrana del Sistema Complemento , Proteínas del Sistema Complemento , Fibrosis , Glicosilfosfatidilinositoles , Proteínas de Choque Térmico , Humanos , Fibrosis Pulmonar Idiopática/patología , Lesión Pulmonar/inducido químicamente , Ratones , Toxina del Pertussis , ARN Mensajero , ARN Interferente Pequeño , Tunicamicina
7.
J Intensive Care Med ; 36(3): 271-276, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32873103

RESUMEN

BACKGROUND: The United States currently has more confirmed cases of COVID-19 than any other country in the world. Given the variability in COVID-19 testing and prevention capability, identifying factors associated with mortality in patients requiring mechanical ventilation is critical. This study aimed to identify which demographics, comorbidities, markers of disease progression, and interventions are associated with 30-day mortality in COVID-19 patients requiring mechanical ventilation. METHODS: Adult patients with a confirmed diagnosis of COVID-19 admitted to one of the health system's intensive care units and requiring mechanical ventilation between March 9, 2020 and April 1, 2020, were included in this observational cohort study. We used Chi-Square and Mann-Whitney U tests to compare patient characteristics between deceased and living patients and multiple logistic regression to assess the association between independent variables and the likelihood of 30-day mortality. RESULTS: We included 85 patients, of which 20 died (23.5%) within 30 days of the first hospital admission. In the univariate analysis, deceased patients were more likely ≥60 years of age (p < 0.001), non-Hispanic (p = 0.026), and diagnosed with a solid malignant tumor (p = 0.003). Insurance status also differed between survivors and non-survivors (p = 0.019). Age ≥60 and malignancy had a 9.5-fold (95% confidence interval 1.4-62.3, p = 0.020) and 5.8-fold higher odds ratio (95% confidence interval 1.2-28.4, p = 0.032) for 30-day mortality after adjusted analysis using multivariable logistic regression, while other independent variables were no longer significant. CONCLUSIONS: In our observational cohort study of 85 mechanically ventilated COVID-19 patients, age, and a diagnosis of a solid malignant tumor were associated with 30-day mortality. Our findings validate concerns for the survival of elderly and cancer patients in the face of the COVID-19 pandemic in the United States, where testing capabilities and preventative measures have been inconsistent. Preventative efforts geared to patients at risk for intensive care unit mortality from COVID-19 should be explored.


Asunto(s)
COVID-19/mortalidad , Etnicidad/estadística & datos numéricos , Seguro de Salud/estadística & datos numéricos , Neoplasias/epidemiología , Respiración Artificial , Negro o Afroamericano/estadística & datos numéricos , Factores de Edad , Anciano , COVID-19/epidemiología , COVID-19/terapia , Estudios de Cohortes , Comorbilidad , Femenino , Hispánicos o Latinos/estadística & datos numéricos , Humanos , Modelos Logísticos , Masculino , Programas Controlados de Atención en Salud/estadística & datos numéricos , Medicaid/estadística & datos numéricos , Medicare/estadística & datos numéricos , Persona de Mediana Edad , Mortalidad , Análisis Multivariante , Oportunidad Relativa , Factores de Riesgo , SARS-CoV-2 , Estados Unidos/epidemiología , Población Blanca/estadística & datos numéricos
8.
Curr Opin Anaesthesiol ; 34(1): 7-12, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33315644

RESUMEN

PURPOSE OF REVIEW: Perioperative transesophageal echocardiography (TEE) is most often employed during cardiac surgery. This review will summarize some of the recent findings relevant to TEE utilization during thoracic surgical procedures. RECENT FINDINGS: Hemodynamic monitoring is a key component of goal-directed fluid therapy, which is also becoming more common for management of thoracic surgical procedures. Although usually not required for the anesthetic management of common thoracic surgeries, TEE is frequently used during lung transplantation and pulmonary thromboendarterectomy. Few clinical studies support current practice patterns, and most recommendations are based on expert opinion. SUMMARY: Currently, routine use of TEE in thoracic surgery is often limited to specific high-risk patients and/or procedures. As in other perioperative settings, TEE may be utilized to elucidate the reasons for acute hemodynamic instability without apparent cause. Contraindications to TEE apply and have to be taken into consideration before performing a TEE on a thoracic surgical patient.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Ecocardiografía Transesofágica , Endarterectomía , Trasplante de Pulmón , Periodo Perioperatorio , Procedimientos Quirúrgicos Torácicos , Humanos , Monitoreo Intraoperatorio
9.
Am J Respir Cell Mol Biol ; 63(5): 613-622, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32692932

RESUMEN

Fibrosis is characterized by fibroblast activation, leading to matrix remodeling culminating in a stiff, type I collagen-rich fibrotic matrix. Alveolar epithelial cell (AEC) apoptosis is also a major feature of fibrogenesis, and AEC apoptosis is sufficient to initiate a robust lung fibrotic response. TGF-ß (transforming growth factor-ß) is a major driver of fibrosis and can induce both AEC apoptosis and fibroblast activation. We and others have previously shown that changes in extracellular matrix stiffness and composition can regulate the cellular response to TGF-ß. In the present study, we find that type I collagen signaling promotes TGF-ß-mediated fibroblast activation and inhibits TGF-ß-induced AEC death. Fibroblasts cultured on type I collagen or fibrotic decellularized lung matrix had augmented activation in response to TGF-ß, whereas AECs on cultured on type I collagen or fibrotic lung matrix were more resistant to TGF-ß-induced apoptosis. Both of these responses were mediated by integrin α2ß1, a major collagen receptor. AECs treated with an α2 integrin inhibitor or with deletion of α2 integrin had loss of collagen-mediated protection from apoptosis. We found that mice with fibroblast-specific deletion of α2 integrin were protected from fibrosis whereas mice with AEC-specific deletion of α2 integrin had more lung injury and a greater fibrotic response to bleomycin. Intrapulmonary delivery of an α2 integrin-activating collagen peptide inhibited AEC apoptosis in vitro and in vivo and attenuated the fibrotic response. These studies underscore the need for a thorough understanding of the divergent response to matrix signaling.


Asunto(s)
Colágeno Tipo I/metabolismo , Integrina alfa2beta1/metabolismo , Fibrosis Pulmonar/metabolismo , Transducción de Señal , Células Epiteliales Alveolares/metabolismo , Animales , Apoptosis , Matriz Extracelular/metabolismo , Integrina alfa2beta1/agonistas , Ratones Endogámicos C57BL
10.
Am J Respir Cell Mol Biol ; 62(5): 622-632, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31922885

RESUMEN

Accumulating evidence suggests that fibrosis is a multicellular process with contributions from alveolar epithelial cells (AECs), recruited monocytes/macrophages, and fibroblasts. We have previously shown that AEC injury is sufficient to induce fibrosis, but the precise mechanism remains unclear. Several cell types, including AECs, can produce CCL2 and CCL12, which can promote fibrosis through CCR2 activation. CCR2 signaling is critical for the initiation and progression of pulmonary fibrosis, in part through recruitment of profibrotic bone marrow-derived monocytes. Attempts at inhibiting CCL2 in patients with fibrosis demonstrated a marked upregulation of CCL2 production and no therapeutic response. To better understand the mechanisms involved in CCL2/CCR2 signaling, we generated mice with conditional deletion of CCL12, a murine homolog of human CCL2. Surprisingly, we found that mice with complete deletion of CCL12 had markedly increased concentrations of other CCR2 ligands and were not protected from fibrosis after bleomycin injury. In contrast, mice with lung epithelial cell-specific deletion of CCL12 were protected from bleomycin-induced fibrosis and had expression of CCL2 and CCL7 similar to that of control mice treated with bleomycin. Deletion of CCL12 within AECs led to decreased recruitment of exudate macrophages. Finally, injury to murine and human primary AECs resulted in increased production of CCL2 and CCL12, in part through activation of the mTOR pathway. In conclusion, these data suggest that targeting CCL2 may be a viable antifibrotic strategy once the pathways involved in the production and function of CCL2 and other CCR2 ligands are better defined.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Quimiocina CCL2/metabolismo , Lesión Pulmonar/complicaciones , Proteínas Quimioatrayentes de Monocitos/metabolismo , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/metabolismo , Animales , Eliminación de Gen , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BL , Especificidad de Órganos , Proteína Reguladora Asociada a mTOR/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
11.
Thromb Haemost ; 119(12): 1968-1980, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31705517

RESUMEN

INTRODUCTION: Impaired plasminogen activation (PA) is causally related to the development of lung fibrosis. Prior studies demonstrate that enhanced PA in the lung limits the severity of scarring following injury and in vitro studies indicate that PA promotes matrix degradation and fibroblast apoptosis. These findings led us to hypothesize that increased PA in an in vivo model would enhance the resolution of established lung fibrosis in conjunction with increased myofibroblast apoptosis. METHODS: Transgenic C57BL/6 mice with doxycycline inducible lung-specific urokinase plasminogen activator (uPA) expression or littermate controls were treated (day 0) with bleomycin or saline. Doxycycline was initiated on days 1, 9, 14, or 21. Lung fibrosis, stiffness, apoptosis, epithelial barrier integrity, and inflammation were assessed. RESULTS: Protection from fibrosis with uPA upregulation from day 1 through day 28 was associated with reduced parenchymal stiffness as determined by atomic force microscopy. Initiation of uPA expression beginning in the late inflammatory or the early fibrotic phase reduced stiffness and fibrosis at day 28. Induction of uPA activity in mice with established fibrosis decreased lung collagen and lung stiffness while increasing myofibroblast apoptosis. Upregulation of uPA did not alter lung inflammation but was associated with improved epithelial cell homeostasis. CONCLUSION: Restoring intrapulmonary PA activity diminishes lung fibrogenesis and enhances the resolution of established lung fibrosis. This PA-mediated resolution is associated with increased myofibroblast apoptosis and improved epithelial cell homeostasis. These studies support the potential capacity of the lung to resolve existing scar in murine models.


Asunto(s)
Regulación de la Expresión Génica , Pulmón/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Apoptosis , Bleomicina/farmacología , Colágeno/metabolismo , Doxiciclina/farmacología , Fibroblastos/metabolismo , Genotipo , Homeostasis , Hidroxiprolina/farmacología , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
12.
J Biol Chem ; 294(22): 8861-8871, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31000627

RESUMEN

Mutations in the genes encoding telomerase reverse transcriptase (TERT) and telomerase's RNA components as well as shortened telomeres are risk factors for idiopathic pulmonary fibrosis, where repetitive injury to the alveolar epithelium is considered a key factor in pathogenesis. Given the importance of TERT in stem cells, we hypothesized that TERT plays an important role in epithelial repair and that its deficiency results in exacerbation of fibrosis by impairing this repair/regenerative process. To evaluate the role of TERT in epithelial cells, we generated type II alveolar epithelial cell (AECII)-specific TERT conditional knockout (SPC-Tert cKO) mice by crossing floxed Tert mice with inducible SPC-driven Cre mice. SPC-Tert cKO mice did not develop pulmonary fibrosis spontaneously up to 9 months of TERT deficiency. However, upon bleomycin treatment, they exhibited enhanced lung injury, inflammation, and fibrosis compared with control mice, accompanied by increased pro-fibrogenic cytokine expression but without a significant effect on AECII telomere length. Moreover, selective TERT deficiency in AECII diminished their proliferation and induced cellular senescence. These findings suggest that AECII-specific TERT deficiency enhances pulmonary fibrosis by heightening susceptibility to bleomycin-induced epithelial injury and diminishing epithelial regenerative capacity because of increased cellular senescence. We confirmed evidence for increased AECII senescence in idiopathic pulmonary fibrosis lungs, suggesting potential clinical relevance of the findings from our animal model. Our results suggest that TERT has a protective role in AECII, unlike its pro-fibrotic activity, observed previously in fibroblasts, indicating that TERT's role in pulmonary fibrosis is cell type-specific.


Asunto(s)
Senescencia Celular , Fibrosis Pulmonar/etiología , Telomerasa/genética , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Animales , Bleomicina/farmacología , Proliferación Celular , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibrosis Pulmonar/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Telomerasa/deficiencia , Telomerasa/metabolismo , Telómero/metabolismo , Acortamiento del Telómero
13.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1035-L1048, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30838865

RESUMEN

Protein phosphatase 2A (PP2A), a ubiquitously expressed Ser/Thr phosphatase is an important regulator of cytokine signaling and cell function. We previously showed that myeloid-specific deletion of PP2A (LysMcrePP2A-/-) increased mortality in a murine peritoneal sepsis model. In the current study, we assessed the role of myeloid PP2A in regulation of lung injury induced by lipopolysaccharide (LPS) or bleomycin delivered intratracheally. LysMcrePP2A-/- mice experienced increased lung injury in response to both LPS and bleomycin. LysMcrePP2A-/- mice developed more exuberant fibrosis in response to bleomycin, elevated cytokine responses, and chronic myeloid inflammation. Bone marrow-derived macrophages (BMDMs) from LysMcrePP2A-/- mice showed exaggerated inflammatory cytokine release under conditions of both M1 and M2 activation. Notably, secretion of IL-10 was elevated under all stimulation conditions, including activation of BMDMs by multiple Toll-like receptor ligands. Supernatants collected from LPS-stimulated LysMcrePP2A-/- BMDMs induced epithelial cell apoptosis in vitro but this effect was mitigated when IL-10 was also depleted from the BMDMs by crossing LysMcrePP2A-/- mice with systemic IL-10-/- mice (LysMcrePP2A-/- × IL-10-/-) or when IL-10 was neutralized. Despite these findings, IL-10 did not directly induce epithelial cell apoptosis but sensitized epithelial cells to other mediators from the BMDMs. Taken together our results demonstrate that myeloid PP2A regulates production of multiple cytokines but that its effect is most pronounced on IL-10 production. Furthermore, IL-10 sensitizes epithelial cells to apoptosis in response to myeloid-derived mediators, which likely contributes to the pathogenesis of lung injury and fibrosis in this model.


Asunto(s)
Células Epiteliales/metabolismo , Interleucina-10/metabolismo , Lesión Pulmonar/patología , Proteína Fosfatasa 2/genética , Fibrosis Pulmonar/patología , Animales , Apoptosis/genética , Bleomicina/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Lipopolisacáridos/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Síndrome de Dificultad Respiratoria/patología
14.
Cell Death Dis ; 9(11): 1056, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333529

RESUMEN

Type II alveolar epithelial cell (AEC) apoptosis is a prominent feature of fibrotic lung diseases and animal models of pulmonary fibrosis. While there is growing recognition of the importance of AEC injury and apoptosis as a causal factor in fibrosis, the underlying mechanisms that link these processes remain unknown. We have previously shown that targeting the type II alveolar epithelium for injury by repetitively administering diphtheria toxin to transgenic mice expressing the diphtheria toxin receptor off of the surfactant protein C promoter (SPC-DTR) develop lung fibrosis, confirming that AEC injury is sufficient to cause fibrosis. In the present study, we find that SPC-DTR mice develop increased activation of caspase 3/7 after initiation of diphtheria toxin treatment consistent with apoptosis within AECs. We also find evidence of efferocytosis, the uptake of apoptotic cells, by alveolar macrophages in this model. To determine the importance of efferocytosis in lung fibrosis, we treated cultured alveolar macrophages with apoptotic type II AECs and found that the uptake induced pro-fibrotic gene expression. We also found that the repetitive intrapulmonary administration of apoptotic type II AEC or MLE-12 cells induces lung fibrosis. Finally, mice lacking a key efferocytosis receptor, CD36, developed attenuated fibrosis in response to apoptotic MLE-12 cells. Collectively, these studies support a novel mechanism linking AEC apoptosis with macrophage pro-fibrotic activation via efferocytosis and reveal previously unrecognized therapeutic targets.


Asunto(s)
Células Epiteliales Alveolares/patología , Apoptosis/genética , Macrófagos Alveolares/patología , Fagocitosis , Alveolos Pulmonares/patología , Fibrosis Pulmonar/patología , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/trasplante , Animales , Líquido del Lavado Bronquioalveolar/química , Antígenos CD36/deficiencia , Antígenos CD36/genética , Antígenos CD36/inmunología , Caspasa 3/genética , Caspasa 3/inmunología , Caspasa 7/genética , Caspasa 7/inmunología , Línea Celular , Toxina Diftérica/administración & dosificación , Regulación de la Expresión Génica , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/inmunología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Activación de Macrófagos , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Cultivo Primario de Células , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/inmunología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/inmunología , Proteína C Asociada a Surfactante Pulmonar , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Transducción de Señal
15.
Am J Respir Cell Mol Biol ; 59(3): 295-305, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29652518

RESUMEN

Progressive fibrosis is a complication of many chronic diseases, and collectively, organ fibrosis is the leading cause of death in the United States. Fibrosis is characterized by accumulation of activated fibroblasts and excessive deposition of extracellular matrix proteins, especially type I collagen. Extensive research has supported a role for matrix signaling in propagating fibrosis, but type I collagen itself is often considered an end product of fibrosis rather than an important regulator of continued collagen deposition. Type I collagen can activate several cell surface receptors, including α2ß1 integrin and discoidin domain receptor 2 (DDR2). We have previously shown that mice deficient in type I collagen have reduced activation of DDR2 and reduced accumulation of activated myofibroblasts. In the present study, we found that DDR2-null mice are protected from fibrosis. Surprisingly, DDR2-null fibroblasts have a normal and possibly exaggerated activation response to transforming growth factor-ß and do not have diminished proliferation compared with wild-type fibroblasts. DDR2-null fibroblasts are significantly more prone to apoptosis, in vitro and in vivo, than wild-type fibroblasts, supporting a paradigm in which fibroblast resistance to apoptosis is critical for progression of fibrosis. We have identified a novel molecular mechanism by which DDR2 can promote the activation of a PDK1 (3-phosphoinositide dependent protein kinase-1)/Akt survival pathway, and we have found that inhibition of PDK1 can augment fibroblast apoptosis. Furthermore, our studies demonstrate that DDR2 expression is heavily skewed to mesenchymal cells compared with epithelial cells and that idiopathic pulmonary fibrosis cells and tissue demonstrate increased activation of DDR2 and PDK1. Collectively, these findings identify a promising target for fibrosis therapy.


Asunto(s)
Colágeno Tipo II/metabolismo , Receptor con Dominio Discoidina 2/metabolismo , Fibroblastos/metabolismo , Integrinas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Animales , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen/métodos , Humanos , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-28432134

RESUMEN

Activation of TGF-ß1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-ß1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-ß1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.


Asunto(s)
Factor de Crecimiento Transformador beta1/fisiología , Animales , Apoptosis , Proliferación Celular , Colágeno/metabolismo , Transición Epitelial-Mesenquimal , Retroalimentación Fisiológica , Fibrosis , Humanos , Integrinas/metabolismo , Integrinas/fisiología , Ratones , Modelos Biológicos , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Cicatrización de Heridas
17.
FASEB J ; 31(12): 5543-5556, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28821630

RESUMEN

Interleukin 17A (IL-17A) and complement (C') activation have each been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). We have reported that IL-17A induces epithelial injury via TGF-ß in murine bronchiolitis obliterans; that TGF-ß and the C' cascade present signaling interactions in mediating epithelial injury; and that the blockade of C' receptors mitigates lung fibrosis. In the present study, we investigated the role of IL-17A in regulating C' in lung fibrosis. Microarray analyses of mRNA isolated from primary normal human small airway epithelial cells indicated that IL-17A (100 ng/ml; 24 h; n = 5 donor lungs) induces C' components (C' factor B, C3, and GPCR kinase isoform 5), cytokines (IL8, -6, and -1B), and cytokine ligands (CXCL1, -2, -3, -5, -6, and -16). IL-17A induces protein and mRNA regulation of C' components and the synthesis of active C' 3a (C3a) in normal primary human alveolar type II epithelial cells (AECs). Wild-type mice subjected to IL-17A neutralization and IL-17A knockout (il17a-/- ) mice were protected against bleomycin (BLEO)-induced fibrosis and collagen deposition. Further, BLEO-injured il17a-/- mice had diminished levels of circulating Krebs Von Den Lungen 6 (alveolar epithelial injury marker), local caspase-3/7, and local endoplasmic reticular stress-related genes. BLEO-induced local C' activation [C3a, C5a, and terminal C' complex (C5b-9)] was attenuated in il17a-/- mice, and IL-17A neutralization prevented the loss of epithelial C' inhibitors (C' receptor-1 related isoform Y and decay accelerating factor), and an increase in local TUNEL levels. RNAi-mediated gene silencing of il17a in fibrotic mice arrested the progression of lung fibrosis, attenuated cellular apoptosis (caspase-3/7) and lung deposition of collagen and C' (C5b-9). Compared to normals, plasma from IPF patients showed significantly higher hemolytic activity. Our findings demonstrate that limiting complement activation by neutralizing IL-17A is a potential mechanism in ameliorating lung fibrosis.-Cipolla, E., Fisher, A. J., Gu, H., Mickler, E. A., Agarwal, M., Wilke, C. A., Kim, K. K., Moore, B. B., Vittal, R. IL-17A deficiency mitigates bleomycin-induced complement activation during lung fibrosis.


Asunto(s)
Bleomicina/farmacología , Activación de Complemento/efectos de los fármacos , Fibrosis/metabolismo , Interleucina-17/deficiencia , Interleucina-17/metabolismo , Enfermedades Pulmonares/metabolismo , Anciano , Animales , Western Blotting , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Fibrosis/genética , Técnica del Anticuerpo Fluorescente , Hemólisis/genética , Hemólisis/fisiología , Humanos , Interleucina-17/genética , Enfermedades Pulmonares/genética , Masculino , Ratones , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L722-L730, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28283477

RESUMEN

Progressive pulmonary fibrosis is a devastating consequence of many acute and chronic insults to the lung. Lung injury leads to alveolar epithelial cell (AEC) death, destruction of the basement membrane, and activation of transforming growth factor-ß (TGF-ß). There is subsequent resolution of the injury and a coordinated and concurrent initiation of fibrosis. Both of these processes may involve activation of similar intracellular signaling pathways regulated in part by dynamic changes to the extracellular matrix. Matrix signaling can augment the profibrotic fibroblast response to TGF-ß. However, similar matrix/integrin signaling pathways may also be involved in the inhibition of ongoing TGF-ß-induced AEC apoptosis. Focal adhesion kinase (FAK) is an integrin-associated signaling molecule expressed by many cell types. We used mice with AEC-specific FAK deletion to isolate the epithelial aspect of integrin signaling in the bleomycin model of lung injury and fibrosis. Mice with AEC-specific deletion of FAK did not exhibit spontaneous lung injury but did have significantly greater terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling-positive cells (18.6 vs. 7.1) per ×200 field, greater bronchoalveolar lavage protein (3.2 vs. 1.8 mg/ml), and significantly greater death (77 vs. 19%) after bleomycin injury compared with littermate control mice. Within primary AECs, activated FAK directly associates with caspase-8 and inhibits activation of the caspase cascade resulting in less apoptosis in response to TGF-ß. Our studies support a model in which dynamic changes to the extracellular matrix after injury promote fibroblast activation and inhibition of epithelial cell apoptosis in response to TGF-ß through FAK activation potentially complicating attempts to nonspecifically target this pathway for antifibrotic therapy.


Asunto(s)
Células Epiteliales/enzimología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Lesión Pulmonar/enzimología , Pulmón/patología , Fibrosis Pulmonar/enzimología , Transducción de Señal , Animales , Apoptosis , Bleomicina , Caspasa 8/metabolismo , Activación Enzimática , Células Epiteliales/patología , Eliminación de Gen , Lesión Pulmonar/complicaciones , Lesión Pulmonar/patología , Ratones , Modelos Biológicos , Especificidad de Órganos , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/patología , Proteína C Asociada a Surfactante Pulmonar/metabolismo
19.
J Pathol ; 241(1): 6-9, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27757968

RESUMEN

Lung fibrosis results from the cumulative effect of dysfunctional wound repair involving multiple cell types, including fibroblasts, epithelial cells, and macrophages responding to an array of soluble and matrix-mediated stimuli. Recent studies have shown that a tyrosine kinase inhibitor that targets FGF, VEGF, and PDGF receptors can slow the rate of decline in pulmonary function in patients with idiopathic pulmonary fibrosis. However, each of these growth factor families is comprised of multiple ligands and receptors with pleiotropic activities on different cell types such that their broad inhibition might have both pro-fibrotic and anti-fibrotic effects, limiting the potential therapeutic efficacy. Continued investigation and delineation of specific roles of individual proteins and receptors on different cell types hold promise for targeting specific pathways with precision and optimizing the potential efficacy of future approaches to lung fibrosis therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Fibrosis Pulmonar Idiopática/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Indoles/uso terapéutico , Terapia Molecular Dirigida/métodos , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores
20.
Front Pharmacol ; 7: 183, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445819

RESUMEN

Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-ß1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-ß1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-ß1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-ß1 synthesis, TGF-ß1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy may prove necessary to halt and reverse disease dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA