RESUMEN
BACKGROUND: This study aimed at developing and validating polymer-based reference materials with varying amounts of porphyrin to accurately assess and calibrate quantitative light-induced fluorescence (QLF) device. METHODS: Reference materials with porphyrin concentrations ranging from 0 to 0.08 wt.% were prepared. The surface properties of the materials were analyzed via gloss and roughness measurements. Color analysis of the specimens was performed on black and white backgrounds with or without filters using a spectrophotometer. This approach revealed the correlations between fluorescence and color. The fluorescence emitted by the specimens was analyzed by measuring ΔR and ΔRmax values using a QLF-D BiluminatorTM. RESULTS: The surface gloss and roughness of the reference materials were not affected by the porphyrin content (p > 0.005). Spectrophotometric measurements revealed significant color differences among most specimen groups depending on the background color and the presence of a filter. QLF-D imaging revealed significant differences in fluorescence (ΔR and ΔRmax) among all specimen groups regardless of the background. The fluorescence values observed on the black backgrounds were higher than those observed on the white backgrounds (p < 0.05). CONCLUSIONS: The developed polymer-based porphyrin-incorporated materials serve as reliable reference standards for accurate assessment and calibration of QLF devices. This study demonstrates the importance of background conditions in fluorescence detection and highlights the potential of these materials as standards for QLF device calibration.
RESUMEN
Cerium oxide nanoparticles are known for their antibacterial effects resulting from Ce3+ to Ce4+ conversion. Application of such cerium oxide nanoparticles in dentistry has been previously considered but limited due to deterioration of mechanical properties. Hence, this study aimed to examine mesoporous silica (MCM-41) coated with cerium oxide nanoparticles and evaluate the antibacterial effects and mechanical properties when applied to dental composite resin. Cerium oxide nanoparticles were coated on the MCM-41 surface using the sol-gel method by adding cerium oxide nanoparticle precursor to the MCM-41 dispersion. The samples were tested for antibacterial activity against Streptococcus mutans via CFU and MTT assays. The mechanical properties were assessed by flexural strength and depth of cure according to ISO 4049. Data were analyzed using a t-test, one-way ANOVA, and Tukey's post-hoc test (p = 0.05). The experimental group showed significantly increased antibacterial properties compared to the control groups (p < 0.005). The flexural strength exhibited a decreasing trend as the amount of cerium oxide nanoparticle-coated MCM-41 increased. However, the flexural strength and depth of cure values of the silane group met the ISO 4049 standard. Antibacterial properties increased with increasing amounts of cerium oxide nanoparticles. Although the mechanical properties decreased, silane treatment overcame this drawback. Hence, the cerium oxide nanoparticles coated on MCM-41 may be used for dental resin composite.
Asunto(s)
Antibacterianos , Cerio , Resinas Compuestas , Nanopartículas , Dióxido de Silicio , Streptococcus mutans , Cerio/química , Cerio/farmacología , Dióxido de Silicio/química , Antibacterianos/farmacología , Antibacterianos/química , Resinas Compuestas/química , Resinas Compuestas/farmacología , Streptococcus mutans/efectos de los fármacos , Nanopartículas/química , Resinas Acrílicas/química , Ensayo de Materiales , Poliuretanos/química , Poliuretanos/farmacología , Resistencia Flexional , PorosidadRESUMEN
Background/purpose: The retrograde filling material, particularly mineral trioxide aggregate (MTA) employed in apicoectomy, should possess high antibacterial efficacy and osteogenic potential. We evaluated the antibacterial efficacy, biocompatibility, and osteogenic potential following the addition of silver nanoparticles (AgNPs) and calcium fluoride (CaF2) in retrograde filling material of MTA. Materials and methods: MTA was mixed with four different solvents. Group 1 (G1): distilled water, Group 2 (G2): 50 ppm AgNPs, Group 3 (G3): 1 wt% CaF2, and Group 4 (G4): 50 ppm AgNPs and 1 wt% CaF2. The pH variation of each group was monitored, while the surface roughness was measured. The antibacterial efficacy against Enterococcus faecalis (E. faecalis) and the viability of murine pre-osteoblast (MC3T3) were evaluated for each group using colorimetric assays. The gene expression levels of osteogenic potential marker (OCN, ALPL, and RUNX2) in MC3T3 cells for each group were quantified using real-time-qPCR. Statistical analysis was performed at α = 0.05 level of significance. Results: When comparing the levels of antibacterial efficacy, the order of effectiveness was G4>G2>G3>G1 (P < 0.05). In the cell viability test, owing to MTA-eluted growth medium having a positive effect on MC3T3 cell proliferation, G1-4 exhibited a statistically increased cell viability compared to the control (P < 0.05). However, G2-4 did not result in a statistically significant difference when compared to G1 (P < 0.05). Moreover, G4 exhibited the highest gene expression among the four groups (P < 0.05). Conclusion: The addition of AgNPs and CaF2 to MTA could be a promising option for use as a new retrograde filling material.
RESUMEN
Background/purpose: In the field of conservative dentistry and endodontics, mineral trioxide aggregate (MTA), commonly used, possesses advantages such as biocompatibility, antimicrobial properties and osteogenic potential. This study investigated the feasibility of utilizing membrane form mineral trioxide aggregate (MTA) as a barrier membrane in guided bone regeneration (GBR) procedures. Materials and methods: Membranes were electrospun from three different formulations: 15 w/v% Polycaprolactone (PCL), 13 w/v% PCL + 2 w/v% MTA (2MTA), and 11 w/v% PCL + 4 w/v% MTA (4MTA). Physicochemical and mechanical properties of the electrospun membrane were compared, encompassing parameters such as surface morphology, fiber diameter distribution, chemical composition, phase identification, tensile stress, pH variation, and water contact angle. Moreover, the antimicrobial properties against of the electrospun membranes were assessed through direct exposure to streptococcus aureus (S. aureus) and candida albicans (C. albicans). Additionally, on the 7th day, biocompatibility and cell attachment were investigated with respect to L929 (fibroblast) and MC3T3 (pre-osteoblast) cells. Inhibition of L929 cell infiltration and the expression of osteogenic related genes including osteocalcin (OCN), alkaline phosphatase (ALP), and runt related transcription factor 2 (RUNX2) in MC3T3 cells on 7th and 14th days were also investigated. Results: PCL, 2MTA, and 4MTA exhibited no statistically differences in fiber diameter distribution and tensile stress. However, as the MTA content increased, wettability and pH also increased. Due to the elevated pH, 4MTA demonstrated the lowest viability S.aureus and C.albicans. All membranes were highly biocompatibility and promoted cell attachment, while effectively preventing L929 cell infiltration. Lastly 4MTA showed increase in OCN, ALP, and RUNX2 expression on both 7th and 14th day. Conclusion: The membrane form MTA possessed characteristics essential for a novel barrier membrane.
RESUMEN
INTRODUCTION AND AIMS: The gaps at the margins of restorative composite resin can increase as the carious process occurs underneath the materials, causing further demineralization along the tooth cavity wall. The aim of this study was to evaluate the effects of restorative resin composite containing hydrated calcium silicate (hCS) filler on enamel protection against demineralization by simulating microleakage between the test material and teeth in a cariogenic environment. METHODS: The experimental resin composites were composed of 70 wt.% filler, which was mixed with a glass filler and hCS in a weight ratio of 70.0% glass (hCS 0), 17.5% hCS + 52.5% glass (hCS 17.5), 35.0% hCS + 35.0% glass (hCS 35.0), and 52.5% hCS + 17.5% glass (hCS 52.5). A light-cured experimental resin composite disk was positioned over a polished bovine enamel disk, separated by a 30-µm gap, and immersed in artificial saliva with pH 4.0 for 15, 30, and 60 days. After the immersion period, the enamel disk was separated from the resin composite disk and evaluated using a microhardness tester, atomic force microscopy, and polarized light microscopy. The opposing sides of the enamel and resin composite disks were observed using scanning electron microscopy/energy dispersive X-ray spectrometry. RESULTS: The enamel surface showed a significant increase in microhardness, decreased roughness, and remineralization layer as the proportion of hCS increased (P < .05). In the scanning electron microscopy image, the enamel surface with hCS 35.0 and 52.5 after all experimental immersion periods, showed a pattern similar to that of a sound tooth. CONCLUSIONS: The results demonstrated that increasing the hCS filler level of restorative resin composites significantly decreased enamel demineralization. CLINICAL RELEVANCE: Hydrated calcium silicate laced restorative resin composites may be a promising dental biomaterial for protecting teeth against demineralization and preventing secondary caries around restorations.
Asunto(s)
Compuestos de Calcio , Resinas Compuestas , Caries Dental , Esmalte Dental , Silicatos , Silicatos/uso terapéutico , Silicatos/química , Resinas Compuestas/química , Resinas Compuestas/uso terapéutico , Compuestos de Calcio/uso terapéutico , Compuestos de Calcio/química , Bovinos , Animales , Caries Dental/prevención & control , Esmalte Dental/efectos de los fármacos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Filtración Dental/prevención & control , Desmineralización Dental/prevención & control , Propiedades de Superficie , Restauración Dental Permanente/métodos , Espectrometría por Rayos X , Vidrio/químicaRESUMEN
This study aimed to propose the measurement methods for resin composite translucency using four shades of resin composite and four spectrophotometers. Four methods were used for measuring translucency: (A) color measurement using reflectance mode, (B) visible light spectrum measurement using reflectance mode, (C) color measurement using transmittance mode, (D) visible light spectrum measurement using transmittance mode. Although there was a significant difference among the results of the translucency measuring methods, the same tendency was observed for translucency parameters obtained using each spectrophotometer. Therefore, the four methods can potentially be used as translucency measuring methods for resin composite.
Asunto(s)
Color , Resinas Compuestas , Ensayo de Materiales , Espectrofotometría , Resinas Compuestas/química , Materiales Dentales/químicaRESUMEN
Dental bases require low thermal conductivity and good mechanical properties, such as bonding with composite resins. This study aims to elucidate the physicochemical properties of premixed mineral trioxide aggregate (MTA) for its suitability as a dental base and to explore the optimal adhesive strategy with composite resin. The thermal conductivity and compressive strength of this premixed MTA are 0.12 W/(mâ¢K) and 93.76 MPa, respectively, Which are deemed adequate for its application as dental base. When bonded to composite resin, the use of 37% phosphoric acid etching before applying the Clearfil SE bond significantly reduced the bonding strength between composite resin and premixed MTA. This was because the compressive strength and Vickers hardness of premixed MTA decreased, and tricalcium silicate was dissolved from the surface during acid etching. Therefore, it is recommended to avoid using 37% phosphoric acid etching when bonding premixed MTA and composite resin as a dental base.
Asunto(s)
Compuestos de Aluminio , Compuestos de Calcio , Resinas Compuestas , Recubrimiento Dental Adhesivo , Óxidos , Ácidos Fosfóricos , Silicatos , Resinas Compuestas/química , Cementos de Resina/química , Grabado Ácido Dental , Propiedades de Superficie , Ensayo de Materiales , Resistencia al Corte , Combinación de MedicamentosRESUMEN
Demineralized white lesions are a common problem when using orthodontic resin cement, which can be prevented with the addition of antibacterial substances. However, the addition of antibacterial substances such as zinc oxide alone may result in the deterioration of the resin cement's functions. Halloysite nanotubes (HNTs) are known to be biocompatible without adversely affecting the mechanical properties of the material while having the ability to load different substances. The purpose of this study was to prepare orthodontic resin cement containing HNT fillers loaded with ZnO (ZnO/HNTs) and to investigate its mechanical, physical, chemical, and antibacterial properties. A group without filler was used as a control. Three groups containing 5 wt.% of HNTs, ZnO, and ZnO/HNTs were prepared. TEM and EDS measurements were carried out to confirm the morphological structure of the HNTs and the successful loading of ZnO onto the HNTs. The mechanical, physical, chemical, and antibacterial properties of the prepared orthodontic resin cement were considered. The ZnO group had high flexural strength and water absorption but a low depth of cure (p < 0.05). The ZnO/HNTs group showed the highest shear bond strength and film thickness (p < 0.05). In the antibacterial test, the ZnO/HNTs group resulted in a significant decrease in the biofilm's metabolic activity compared to the other groups (p < 0.05). ZnO/HNTs did not affect cell viability. In addition, ZnO was cytotoxic at a concentration of 100% in the extract. The nanocomposite developed in this study exhibited antimicrobial activity against S. mutans while maintaining the mechanical, physical, and chemical properties of orthodontic resin cement. Therefore, it has the potential to be used as an orthodontic resin cement that can prevent DWLs.
RESUMEN
BACKGROUND: White Portland cement is a calcium silicate material. It exhibits antibacterial properties and is biocompatible. In addition, calcium silicate-based materials are known to release calcium ions and form apatite. The purpose of this study was to develop a novel bioactive restorative resin composite with antibacterial and apatite forming properties to prevent tooth caries at the interface of teeth and restorative materials, by incorporation of hydrated calcium silicate (hCS) derived from white Portland cement. METHODS: To prepare the experimental composite resins, a 30 wt% light-curable resin matrix and 70 wt% filler, which was mixed with hCS and silanized glass powder were prepared in following concentrations: 0, 17.5, 35.0, and 52.5 wt% hCS filler. The depth of cure, flexural strength, water sorption, solubility, and antibacterial effect were tested. After immersion in artificial saliva solution for 15, 30, 60, and 90 days, ion concentration by ICP-MS and apatite formation using SEM-EDS, Raman spectroscopy and XRD from experimental specimens were analyzed. RESULTS: All experimental groups showed clinically acceptable depths of cure and flexural strength for the use as the restorative composite resin. Water sorption, solubility, released Ca and Si ions increased with the addition of hCS to the experimental composite resin. Experimental groups containing hCS showed greater antibacterial effects compared with the 0 wt% hCS filler group (p < 0.05). The 52.5 wt% hCS filler group produced precipitates mainly composed of Ca and P detected as hydroxyapatite after immersion in artificial saliva solution for 30, 60, and 90 days. CONCLUSIONS: This results show that composite resins containing hCS filler is effective in antibacterial effects. hCS has also apatite formation ability for reducing gap size of microleakage by accumulating hydroxyapatite precipitates at the restoration-tooth interface. Therefore, novel composite resin containing hCS is promising bioactive resin because of its clinically acceptable physiochemical properties, antibacterial properties, and self-sealing potential for prevention of microleakage for longer usage of restorations.
RESUMEN
Poly-(methyl methacrylate) (PMMA) is the preferred biomaterial for orofacial prostheses used for the rehabilitation of naso-palatal defects. However, conventional PMMA has limitations determined by the complexity of the local microbiota and the friability of oral mucosa adjacent to these defects. Our purpose was to develop a new type of PMMA, i-PMMA, with good biocompatibility and better biological effects such as higher resistance to microbial adhesion of multiple species and enhanced antioxidant effect. The addition of cerium oxide nanoparticles to PMMA using a mesoporous nano-silica carrier and polybetaine conditioning, resulted in an increased release of cerium ions and enzyme mimetic activity, without tangible loss of mechanical properties. Ex vivo experiments confirmed these observations. In stressed human gingival fibroblasts, i-PMMA reduced the levels of reactive oxygen species and increased the expression of homeostasis-related proteins (PPARg, ATG5, LCI/III). Furthermore, i-PMMA increased the levels of expression of superoxide dismutase and mitogen-activated protein kinases (ERK and Akt), and cellular migration. Lastly, we demonstrated the biosafety of i-PMMA using two in vivo models: skin sensitization assay and oral mucosa irritation test, respectively. Therefore, i-PMMA offers a cytoprotective interface that prevents microbial adhesion and attenuates oxidative stress, thus supporting physiological recovery of the oral mucosa.
Asunto(s)
Cerio , Polimetil Metacrilato , Humanos , Metacrilatos , Cerio/farmacología , Prótesis e ImplantesRESUMEN
INTRODUCTION: Microbiome from a "healthy cohort" is used as a reference for comparison to cases and intervention. However, the studies with cohort-based clinical research have not sufficiently accounted for the multistability in oral microbial community. The screening is limited to phenotypic features with marked variations in microbial genomic markers. Herein, we aimed to assess the stability of the oral microbiome across time from an intervention-free "healthy" cohort. METHODS: We obtained 33 supragingival samples of 11 healthy participants from the biobank. For each participant, we processed one sample as baseline (T0) and two samples spaced at 1-month (T1) and 3-month (T2) intervals for 16S ribosomal RNA gene sequencing analysis. RESULTS: We observed that taxonomic profiling had a similar pattern of dominant genera, namely, Rothia, Prevotella, and Hemophilus, at all time points. Shannon diversity revealed a significant increase from T0 (p < .05). Bray Curtis dissimilarity was significant (R = -.02, p < .01) within the cohort at each time point. Community stability had negative correlation to synchrony (r = -.739; p = .009) and variance (r = -.605; p = .048) of the species. Clustering revealed marked differences in the grouping patterns between the three time points. For all time points, the clusters presented a substantially dissimilar set of differentially abundant taxonomic and functional biomarkers. CONCLUSION: Our observations indicate towards the presence of multistable states within the oral microbiome in an intervention-free healthy cohort. For a conclusive and meaningful long-term reference, dental clinical research should account for multistability in the personalized therapy approach to improve the identification and classification of reliable markers.
Asunto(s)
Microbiota , Micrococcaceae , Humanos , ARN Ribosómico 16S/genética , Microbiota/genética , Estudios de Cohortes , Biomarcadores , Micrococcaceae/genéticaRESUMEN
Poly (methyl methacrylate) (PMMA) is a commonly used material for the fabrication of biomedical appliances. Although PMMA has several advantages, it is susceptible to microbial insults with practical use. Therefore, different bioactive nanomaterials, such as nanoceria (CeN), have been proposed to enhance the properties of PMMA. In this study, we investigated the effect of the incorporation of CeN into PMMA with and without the use of mesoporous silica nanoparticle (SBA-15) carriers. The unmodified PMMA specimens (control, CTRL) were compared to groups containing SBA-15, CeN, and the synthesized SBA-15 impregnated with CeN (SBA-15@CeN) at different loading percentages. The mechanical and physical properties of the different SBA-15@CeN groups and their effects on cell viability were investigated, and the optimal CeN concentration was identified accordingly. Our results revealed that flexural strength was significantly (P < 0.01) reduced in the SBA-15@CeN3× group (containing 3-fold the CeN wt. %). Although the surface microhardness increased with the increase in the wt. % of SBA-15@CeN, cell viability was significantly reduced (P < 0.001). The SBA-15@CeN1× group had the optimal concentration and displayed significant resistance to single-and multispecies microbial colonization. Finally, the enzymatic activity of CeN was significantly high in the SBA-15@CeN1× group. The proinflammatory markers (IL-6, IL-1ß, TNF-α, CD80, and CD86) showed a significant (P < 0.001) multifold reduction in lipopolysaccharide-induced RAW cells treated with a 5-day eluate of the SBA-15@CeN1× group. These results indicate that the addition of SBA-15@CeN at 1.5 wt % improves the biological response of PMMA without compromising its mechanical properties.
Asunto(s)
Bases para Dentadura , Polimetil Metacrilato , Dióxido de Silicio , Propiedades de Superficie , Ensayo de MaterialesRESUMEN
Hybrid ionomer cements (HICs) are aesthetic polyelectrolyte cements that have been modified with a resin. The setting of HICs occurs by both monomer polymerization and an acid-base reaction. In addition, HICs contain a resin, which is substituted for water. Thus, the competition between the setting reactions and reduced water content inherently limits polysalt formation and, consequently the bioactive interactions. In this study, we explored the effects of polybetaine zwitterionic derivatives (mZMs) on the augmentation of the bioactive response of HICs. The polybetaines were homogenized into an HIC in different proportions (α, ß, and γ) at 3% w/v. Following basic characterization, the bioactive response of human dental pulp stem cells (hDPSCs) was evaluated. The augmented release of the principal constituent ions (strontium, silica, and fluoride) from the HIC was observed with the addition of the mZMs. Modification with α-mZM elicited the most favorable bioactive response, namely, increased ion elution, in vitro calcium phosphate precipitation, and excellent biofouling resistance, which deterred the growth of the bridging species of Veillonella. Moreover, α-mZM resulted in a significant increase in the hDPSC response, as confirmed by a significant increase (p < 0.05) in alizarin red staining. The results of mRNA expression tests, performed using periodically refreshed media, showed increased and early peak expression levels for RUNX2, OCN, and OPN in the case of α-mZM. Based on the results of the in vitro experiments, it can be concluded that modification of HICs with polybetaine α-mZM can augment the overall biological response.
Asunto(s)
Fluoruros , Cementos de Ionómero Vítreo , Humanos , Cementos para Huesos , Ensayo de MaterialesRESUMEN
This study was aimed to evaluate the effect of thickness (1, 2, 3, and 4 mm) on the translucency of resin-based composites (RBCs) and glass-ceramics, and compare the influence of the thickness of those materials on the translucency parameter (TP) value. The materials were divided into two groups, eight RBCs in Group 1 and five glass-ceramics in Group 2 and TP, ΔL*, Δa*, and Δb* were compared. Statistically significant differences were present in the 2, 3, and 4 mm in the TP, in the 2 and 4 mm in ΔL*, and in all thicknesses in Δa* and Δb* betweent the two groups. The TP of RBCs and glass-ceramics decreased as thickness increased, especially from 1 mm to 2 mm. The TP values of the RBCs were more significantly decreased as the thickness of the material increased from 2 mm to 4 mm than those of the glass-ceramics.
Asunto(s)
Materiales Dentales , Porcelana Dental , Color , Ensayo de Materiales , Cerámica , Propiedades de SuperficieRESUMEN
Calcium silicate cement (CSC) is widely used as an endodontic material in clinical applications such as direct pulp capping, pulpotomy, or root canal. CSC has good biocompatibility, sealing properties, and the ability to enhance hard tissue regeneration. However, the disadvantage of CSC is the difficulty in handling when placing it into endodontic tissue due to the long setting time. Several attempts have been made to improve handling of CSC; however, these methods were limited by osteogenic properties. To overcome such a disadvantage, this study investigated the use of Pluronic F127 (F127) for the development easy-to-handle novel endodontic CSCs with osteogenic properties. In this case, different concentrations of F127 (5%, 10%, 20%, 30%, and 40%) were implemented to generate CSC specimens H5, H10, H20, H30, and H40, respectively. Calcium ion was continuously released for 28 days. In addition, each group resulted in apatite formation for 28 days corresponding to calcium ion release. The concentration of F127 showed opposite relationships with water solubility and compressive strength. The H20 group showed a high level of osteogenic activity compared to other groups at 14 days. Mineralization of the H20 group was higher than that of the other groups. This study indicates that the novel F127-based hydrogel with CSC can potentially be used as endodontic filler.
RESUMEN
INTRODUCTION: In this study, we aimed to evaluate and compare the bracket positioning accuracy of the indirect bonding (IDB) transfer tray fabricated in-clinic using the tray printing (TP) and marker-model printing methods (MP). METHODS: The TP group was further divided into 2 groups (single-tray printing [STP] and multiple-tray printing [MTP]) depending on the presence of a tray split created using the 3-dimensional (3D) software. Five duplicated plaster models were used for each of the 3 experimental groups, and a total of 180 artificial teeth, except the second molar, were evaluated in the experiment. The dental model was scanned using a model scanner (E3; 3Shape Dental Systems, Copenhagen, Denmark). Virtual brackets were placed on facial axis points, and the IDB trays were designed and fabricated using a 3D printer (VIDA; EnvisionTEC, Mich). The accuracy of bracket positioning was evaluated by comparing the planned bracket positions and the actual bracket positions using 3D analysis on inspection software. The main effects and first-order interaction effects were analyzed together by analysis for the analysis of variance. RESULTS: The mean distance and height errors were significantly lower in the STP group than those in the MP and MTP groups (P <0.05). The mean distance error was 0.06 mm in the STP group and 0.09 mm in the MP and MTP groups. The mean height error was 0.10 mm in the STP group and 0.15 mm and 0.18 mm in MP and MTP groups, respectively. However, no significant differences were observed in the angular errors among the 3 groups. CONCLUSIONS: The in-office-fabricated IDB system with computer-aided design and 3D printer is clinically applicable after considering the linear and angular errors. We recommend IDB trays fabricated using the STP method owing to the lower frequency of bracket positioning errors and ease of fabrication.
Asunto(s)
Recubrimiento Dental Adhesivo , Soportes Ortodóncicos , Diseño Asistido por Computadora , Recubrimiento Dental Adhesivo/métodos , Humanos , Modelos Dentales , Impresión TridimensionalRESUMEN
OBJECTIVES: The objective of this study was to evaluate an orthodontic adhesive containing hydrated calcium silicate (hCS) in terms of its bond strength with the enamel surface and its acid-neutralization and apatite-forming abilities. METHODS: The experimental orthodontic adhesives were composed of 30 wt.% resin matrix and 70 wt.% filler, which itself was a mixture of silanized glass filler and hCS in weight ratios of 100% glass filler (hCS 0), 17.5% hCS (hCS 17.5), 35% hCS (hCS 35.0), and 52.5% hCS (hCS 52.5). The degree of conversion (DC) and shear bond strength (SBS) of bovine enamel surfaces were tested. pH measurements were performed immediately upon submersion of the specimens in a lactic acid solution. The surface precipitates that formed on specimens immersed in phosphate-buffered saline (PBS) were analyzed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and Raman spectroscopy after 15, 30, and 90 days. RESULTS: The experimental groups exhibited no significant differences in DC and had clinically acceptable SBS values. The hCS-containing groups showed increasing pH values as more hCS was added. hCS 52.5 produced Ca- and P-containing surface precipitates after PBS immersion, and hydroxyapatite deposition was detected after 15, 30, and 90 days. CONCLUSIONS: These results suggest that orthodontic adhesives containing hCS are effective for acid neutralization. Furthermore, hCS has an apatite-forming ability for enamel remineralization. CLINICAL SIGNIFICANCE: The novel orthodontic adhesive containing hCS exhibits a potential clinical benefit against demineralization and enhanced remineralization of the enamel surface around or beneath the orthodontic brackets.
Asunto(s)
Recubrimiento Dental Adhesivo , Soportes Ortodóncicos , Animales , Apatitas , Compuestos de Calcio , Bovinos , Recubrimiento Dental Adhesivo/métodos , Cementos Dentales/química , Ensayo de Materiales , Cementos de Resina/química , Resistencia al Corte , Silicatos , Propiedades de SuperficieRESUMEN
OBJECTIVES: This study aimed to evaluate the effects of 30% hydrogen peroxide (HP) solution containing various contents of 45S5 bioactive glass (BAG) on whitening efficacy and enamel surface properties after simulating the clinical bleaching procedure. MATERIALS AND METHODS: A total of 60 bovine enamel specimens discolored with black tea were divided into five groups treated with distilled water (DW), HP, 0.01 wt.% BAG + HP, 1.0 wt.% BAG + HP, and 20.0 wt.% BAG + HP (n = 12). The pH change was observed for 20 min immediately after mixing the experimental solutions, which were applied for 20 min/week, at 37 °C over 21 days. Color, gloss, roughness, microhardness, and micromorphology measurements were conducted before and after bleaching treatment. RESULTS: All groups containing BAG experienced an increase in pH from 3.5 to 5.5 in less than 1 min, and the final pH increased as the BAG content increased. The ΔE of all experimental groups was significantly higher than that of the DW group (p < 0.05), but there were no significant differences between different BAG contents (p > 0.05). Gloss significantly decreased in all experimental groups compared to the DW group, and the increased BAG content had significantly affected the decrease in gloss (p < 0.05). There was no statistical difference in surface roughness (p > 0.05), but hardness increased significantly with BAG content after bleaching treatment (p < 0.05). CONCLUSIONS: HP containing 45S5 BAG showed efficacy in tooth whitening. Also, the pH value of the HP remained acidic near 3.5 for 20 min, while the HP containing the 45S5 BAG showed an increase in pH, which inhibited the demineralization of the enamel surface, and maintained the surface morphology. CLINICAL RELEVANCE: These novel materials are promising candidates to minimize enamel surface damage caused by HP during bleaching procedure in dental clinic.
Asunto(s)
Blanqueadores Dentales , Blanqueamiento de Dientes , Animales , Bovinos , Esmalte Dental , Dureza , Peróxido de Hidrógeno/química , Propiedades de Superficie , Blanqueamiento de Dientes/métodos , Blanqueadores Dentales/química , Blanqueadores Dentales/farmacologíaRESUMEN
Polyalkenoate cement (PAC) is a promising material for regenerative hard tissue therapy. The ionically rich glass component of PAC encourages bioactive interaction via. the release of essential ions. However, PAC bioactivity is restricted owing to (i) structurally inherent cationic network formers and (ii) surface bacterial biofilm formation. These two factors cause a deficiency in ion release, further complicated by secondary infections and premature therapeutic failure. Here, a multivalent zwitterionic network modifier (mZM) is presented for upregulation of ionic exchange and bioactivity enhancement. By introducing a non-zero charged mZM into PACs, an increase in the proportion of non-bridging oxygen occurs. The network modification promotes ion channel formation, causing a multiple-fold increase in ion release and surface deposition of hydroxy-carbonate apatite (ca. 74%). Experiments ex vivo and animal models also demonstrate the efficient remineralization ability of the mZM. Furthermore, divalent cationic interaction results in bacterial biofilm reduction (ca. 68%) while also influencing a shift in the biofilm species composition, which favors commensal growth. Therefore, PAC modification with mZM offers a promising solution for upregulation of bioactivity, even aiding in customization by targeting site-specific regenerative therapy in future applications.
RESUMEN
Biocompatibility is important for the 3D printing of resins used in medical devices and can be affected by photoinitiators, one of the key additives used in the 3D printing process. The choice of ingredients must be considered, as the toxicity varies depending on the photoinitiator, and unreacted photoinitiator may leach out of the polymerized resin. In this study, the use of ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPO-L) as a photoinitiator for the 3D printing of resin was considered for application in medical device production, where the cytotoxicity, colour stability, dimensional accuracy, degree of conversion, and mechanical/physical properties were evaluated. Along with TPO-L, two conventional photoinitiators, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide (BAPO) and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO), were considered. A total of 0.1 mol% of each photoinitiator was mixed with the resin matrix to prepare a resin mixture for 3D printing. The specimens were printed using a direct light processing (DLP) type 3D printer. The 3D-printed specimens were postprocessed and evaluated for cytotoxicity, colour stability, dimensional accuracy, degree of conversion, and mechanical properties in accordance with international standards and the methods described in previous studies. The TPO-L photoinitiator showed excellent biocompatibility and colour stability and possessed with an acceptable dimensional accuracy for use in the 3D printing of resins. Therefore, the TPO-L photoinitiator can be sufficiently used as a photoinitiator for dental 3D-printed resin.