RESUMEN
The surge in RNA therapeutics has revolutionized treatments for infectious diseases like COVID-19 and shows the potential to expand into other therapeutic areas. However, the typical requirement for ultra-cold storage of mRNA-LNP formulations poses significant logistical challenges for global distribution. Lyophilization serves as a potential strategy to extend mRNA-LNP stability while eliminating the need for ultra-cold supply chain logistics. Although recent advancements have demonstrated the promise of lyophilization, the choice of lyoprotectant is predominately focused on sucrose, and there remains a gap in comprehensive evaluation and comparison of lyoprotectants and buffers. Here, we aim to systematically investigate the impact of a diverse range of excipients including oligosaccharides, polymers, amino acids, and various buffers, on the quality and performance of lyophilized mRNA-LNPs. From the screening of 45 mRNA-LNP formulations under various lyoprotectant and buffer conditions for lyophilization, we identified previously unexplored formulation compositions, e.g., polyvinylpyrrolidone (PVP) in Tris or acetate buffers, as promising alternatives to the commonly used oligosaccharides to maintain the physicochemical stability of lyophilized mRNA-LNPs. Further, we delved into how physicochemical and structural properties influence the functionality of lyophilized mRNA-LNPs. Leveraging high-throughput small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM), we showed that there is complex interplay between mRNA-LNP structural features and cellular translation efficacy. We also assessed innate immune responses of the screened mRNA-LNPs in human peripheral blood mononuclear cells (PBMCs), and showed minimal alterations of cytokine secretion profiles induced by lyophilized formulations. Our results provide valuable insights into the structure-activity relationship of lyophilized formulations of mRNA-LNP therapeutics, paving the way for rational design of these formulations. This work creates a foundation for a comprehensive understanding of mRNA-LNP properties and in vitro performance change resulting from lyophilization.
Asunto(s)
Excipientes , Liofilización , ARN Mensajero , Humanos , Tampones (Química) , Excipientes/química , Leucocitos Mononucleares , SARS-CoV-2 , Crioprotectores/química , Liposomas , NanopartículasRESUMEN
Lipid nanoparticles (LNPs) are being intensively researched and developed to leverage their ability to safely and effectively deliver therapeutics. To achieve optimal therapeutic delivery, a comprehensive understanding of the relationship between formulation, structure, and efficacy is critical. However, the vast chemical space involved in the production of LNPs and the resulting structural complexity make the structure to function relationship challenging to assess and predict. New components and formulation procedures, which provide new opportunities for the use of LNPs, would be best identified and optimized using high-throughput characterization methods. Recently, a high-throughput workflow, consisting of automated mixing, small-angle X-ray scattering (SAXS), and cellular assays, demonstrated a link between formulation, internal structure, and efficacy for a library of LNPs. As SAXS data can be rapidly collected, the stage is set for the collection of thousands of SAXS profiles from a myriad of LNP formulations. In addition, correlated LNP small-angle neutron scattering (SANS) datasets, where components are systematically deuterated for additional contrast inside, provide complementary structural information. The centralization of SAXS and SANS datasets from LNPs, with appropriate, standardized metadata describing formulation parameters, into a data repository will provide valuable guidance for the formulation of LNPs with desired properties. To this end, we introduce Simple Scattering, an easy-to-use, open data repository for storing and sharing groups of correlated scattering profiles obtained from LNP screening experiments. Here, we discuss the current state of the repository, including limitations and upcoming changes, and our vision towards future usage in developing our collective knowledge base of LNPs.
RESUMEN
The structural determination of natural products (NPs) can be arduous because of sample heterogeneity. This often demands iterative purification processes and characterization of complex molecules that may be available only in miniscule quantities. Microcrystal electron diffraction (microED) has recently shown promise as a method to solve crystal structures of NPs from nanogram quantities of analyte. However, its implementation in NP discovery remains hampered by sample throughput and purity requirements, akin to traditional NP-discovery workflows. In the methods described herein, we leverage the resolving power of transmission electron microscopy (TEM) and the miniaturization capabilities of deoxyribonucleic acid (DNA) microarray technology to address these challenges through the establishment of an NP screening platform, array electron diffraction (ArrayED). In this workflow, an array of high-performance liquid chromatography (HPLC) fractions taken from crude extracts was deposited onto TEM grids in picoliter-sized droplets. This multiplexing of analytes on TEM grids enables 1200 or more unique samples to be simultaneously inserted into a TEM instrument equipped with an autoloader. Selected area electron diffraction analysis of these microarrayed grids allows for the rapid identification of crystalline metabolites. In this study, ArrayED enabled structural characterization of 14 natural products, including four novel crystal structures and two novel polymorphs, from 20 crude extracts. Moreover, we identify several chemical species that would not be detected by standard mass spectrometry (MS) or ultraviolet-visible (UV/vis) spectroscopy and crystal forms that would not be characterized using traditional methods.
RESUMEN
Medium-sized rings (8-11-membered cycles) are often more challenging to synthesize than smaller rings (5-7-membered cycles) due to ring strain. Herein, we report a catalytic method for forming 8- and 9-membered rings that proceeds via the intramolecular Friedel-Crafts reactions of vinyl carbocation intermediates. These reactive species are generated catalytically through the ionization of vinyl toluenesulfonates by a Lewis acidic lithium cation-weakly coordinating anion salt.
RESUMEN
The recent clinical and commercial success of lipid nanoparticles (LNPs) for nucleic acid delivery has incentivized the development of new technologies to manufacture LNPs. As new technologies emerge, researchers must determine which technologies to assess and how to perform comparative evaluations. In this article, we use a quality-by-design approach to systematically investigate how the mixer technology used to form LNPs influences LNPstructure. Specifically, a coaxial turbulent jet mixer and a staggered herringbone microfluidic mixer were systematically compared via matched formulation and process conditions. A full-factorial design-of-experiments study with three factors and three levels was executed for each mixer to compare process robustness in the production of antisense oligonucleotide (ASO) LNPs. ASO-LNPs generated with the coaxial turbulent jet mixer were consistently smaller, had a narrower particle size distribution, and had a higher ASO encapsulation as compared to the microfluidic mixer, but had a greater variation in internal structure with less ordered cores. A subset of the study was replicated for mRNA-LNPs with comparable trends in particle size and encapsulation, but more frequent bleb features for LNPs produced by the coaxial turbulent jet mixer. The study design used here provides a road map for how researchers may compare different mixer technologies (or process changes more broadly) and how such studies can inform process robustness and manufacturing control strategies.
Asunto(s)
Microfluídica , Nanopartículas , Liposomas , Nanopartículas/química , ARN MensajeroRESUMEN
4-Hydroxy-2-pyridone alkaloids have attracted attention for synthetic and biosynthetic studies due to their broad biological activities and structural diversity. Here, we elucidated the pathway and chemical logic of (-)-sambutoxin (1) biosynthesis. In particular, we uncovered the enzymatic origin of the tetrahydropyran moiety and showed that the p-hydroxyphenyl group is installed via a late-stage, P450-catalyzed oxidation of the phenylalanine-derived side chain rather than via a direct incorporation of tyrosine.
Asunto(s)
Fusarium/química , Micotoxinas/química , Fenilalanina/química , Piridinas/química , Tirosina/química , Alcaloides/química , Fusarium/metabolismo , Estructura Molecular , Oxidación-ReducciónRESUMEN
More than 60% of pharmaceuticals are related to natural products (NPs), chemicals produced by living organisms. Despite this, the rate of NP discovery has slowed over the past few decades. In many cases the rate-limiting step in NP discovery is structural characterization. Here we report the use of microcrystal electron diffraction (MicroED), an emerging cryogenic electron microscopy (CryoEM) method, in combination with genome mining to accelerate NP discovery and structural elucidation. As proof of principle we rapidly determine the structure of a new 2-pyridone NP, Py-469, and revise the structure of fischerin, an NP isolated more than 25 years ago, with potent cytotoxicity but hitherto ambiguous structural assignment. This study serves as a powerful demonstration of the synergy of MicroED and synthetic biology in NP discovery, technologies that when taken together will ultimately accelerate the rate at which new drugs are discovered.
Asunto(s)
Productos Biológicos/química , Microscopía por Crioelectrón , Modelos Moleculares , Conformación MolecularRESUMEN
The lomaiviticins are dimeric genotoxic metabolites that contain unusual diazocyclopentadiene functional groups and 2-4 deoxyglycoside residues. Because only 6 of 19 carbon atoms in the monomeric aglycon unit are proton-attached, their structure determination by NMR spectroscopic analysis is difficult. Prior structure elucidation efforts established that the two halves of the lomaiviticins are joined by a single carbon-carbon bond appended to an oxidized cyclohexenone ring. This ring was believed to comprise a 4,5-dihydroxycyclohex-2-ene-1-one. The bridging bond was positioned at C6. This structure proposal has not been tested because no lomaiviticin has been prepared by total chemical synthesis or successfully analyzed by X-ray crystallography. Here, we disclose microED studies which establish that (-)-lomaiviticin C contains a 4,6-dihydroxy-cyclohex-2-ene-1-one residue, that the bridging carbon-carbon bond is located at C5, and that the orientation of the cyclohexenone ring and configuration of the secondary glycoside are reversed, relative to their original assignment. High-field (800 MHz) NMR analysis supports the revised assignment and suggests earlier efforts were misled by a combination of a near-zero 3JH4,H5 coupling constant and a 4JC,H coupling interpreted as a 3JC,H coupling. DFT calculations of the expected 13C chemical shifts and C-H coupling constants provide further robust support for the structure revision. Because the interconversion of lomaiviticins A, B, and C has been demonstrated, these findings apply to each isolate. These studies clarify the structures of this family of metabolites and underscore the power of microED analysis in natural product structure determination.
Asunto(s)
Fluorenos/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , TermodinámicaRESUMEN
Few nucleoside-derived natural products have been identified from animals, despite the ubiquity of nucleosides in living organisms. Here, we use a combination of synthesis and the emerging electron microscopy technique microcrystal electron diffraction to determine the structures of several N3-(ß-glucopyranosyl)uric acid derivatives in Caenorhabditis elegans. These noncanonical gluconucleosides further integrate an ascaroside moiety, for which we present a shortened synthetic route. The production of a phosphorylated gluconucleoside is influenced by evolutionarily conserved insulin signaling.
Asunto(s)
Caenorhabditis elegans/química , Nucleósidos/química , Ácido Úrico/química , Animales , Microscopía Electrónica de Transmisión , Estructura Molecular , Nucleósidos/metabolismo , Transducción de SeñalRESUMEN
Here we apply microcrystal electron diffraction (MicroED) to the structural determination of transition-metal complexes. We find that the simultaneous use of 300 keV electrons, very low electron doses, and an ultrasensitive camera allows for the collection of data without cryogenic cooling of the stage. This technique reveals the first crystal structures of the classic zirconocene hydride, colloquially known as "Schwartz's reagent", a novel Pd(II) complex not amenable to solution-state NMR or X-ray crystallography, and five other paramagnetic and diamagnetic transition-metal complexes.