RESUMEN
BACKGROUND: Unlike in adult and pediatric patients, the usefulness of lactate in preterm infants has not been thoroughly discussed. This study aimed to evaluate whether the lactate level in the first hours of life is an important factor associated with neonatal death in very-low-birth-weight (VLBW) preterm infants. METHODS: Electronic medical records from a level 4 neonatal intensive care unit in South Korea were reviewed to obtain perinatal and neonatal outcomes. Data on lactate levels of preterm infants in the first 12 h of life were collected. Neonatal mortality and morbidities were compared based on lactate levels. Subsequently, machine-learning models incorporating 20 independent variables, both with and without lactate, were compared for model performances and feature importance of lactate for predicting in-hospital mortality in the applicable models. RESULTS: One hundred and sixty-eight preterm infants were included. Death rates on days 7 and 30 of life (D30-mortality) were significantly higher in infants with high lactate levels (≥3rd interquartile range) than in those with lower levels (<3rd interquartile range). Though statistically insignificant, the overall in-hospital mortality was more than twice as high in the high lactate level group than in the lower lactate level group. Based on the machine learning results, Random Forest, Gradient Boosting, and LightGBM models all showed greater area under the curves when lactate was included. Lactate consistently ranked in the variables of top five feature importance, particularly showing the greatest value in the Gradient Boosting model. CONCLUSION: Lactate levels during the early hours of life may be an important factor associated with in-hospital death of preterm VLBW infants. Based on the enhanced performance of the above-mentioned machine learning models, lactate levels in the early postnatal period may add to assessing the clinical status and predicting the hospital course in this population.
RESUMEN
Interfacial strain engineering in ferroic nanomembranes can broaden the scope of ferroic nanomembrane assembly as well as facilitate the engineering of multiferroic-based devices with enhanced functionalities. Geometrical engineering in these material systems enables the realization of 3-D architectures with unconventional physical properties. Here, 3-D multiferroic architectures are introduced by incorporating barium titanate (BaTiO3, BTO) and cobalt ferrite (CoFe2O4, CFO) bilayer nanomembranes. Using photolithography and substrate etching techniques, complex 3-D microarchitectures including helices, arcs, and kirigami-inspired frames are developed. These 3-D architectures exhibit remarkable mechanical deformation capabilities, which can be attributed to the superelastic behavior of the membranes and geometric configurations. It is also demonstrated that dynamic shape reconfiguration of these nanomembrane architectures under electron beam exposure showcases their potential as electrically actuated microgrippers and for other micromechanical applications. This research highlights the versatility and promise of multi-dimensional ferroic nanomembrane architectures in the fields of micro actuation, soft robotics, and adaptive structures, paving the way for incorporating these architectures into stimulus-responsive materials and devices.
RESUMEN
The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of CF. The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex, which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest that interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Sistema de Lectura Ribosómico , Pliegue de Proteína , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Sistema de Lectura Ribosómico/genética , Humanos , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Biosíntesis de Proteínas , Ribosomas/metabolismo , Conformación de Ácido Nucleico , MutaciónRESUMEN
Flexible and stretchable electronics have emerged as a groundbreaking technology with wide-ranging applications, including wearable devices, medical implants, and environmental monitoring systems. Among their numerous applications, hydrogen sensing represents a critical area of research, particularly due to hydrogen's role as a clean energy carrier and its explosive nature at high concentrations. This review paper provides a comprehensive overview of the recent advancements in flexible and stretchable electronics tailored for resistive hydrogen sensing applications. It begins by introducing the fundamental principles underlying the operation of flexible and stretchable resistive sensors, highlighting the innovative materials and fabrication techniques that enable their exceptional mechanical resilience and adaptability. Following this, the paper delves into the specific strategies employed in the integration of these resistive sensors into hydrogen detection systems, discussing the merits and limitations of various sensor designs, from nanoscale transducers to fully integrated wearable devices. Special attention is paid to the sensitivity, selectivity, and operational stability of these resistive sensors, as well as their performance under real-world conditions. Furthermore, the review explores the challenges and opportunities in this rapidly evolving field, including the scalability of manufacturing processes, the integration of resistive sensor networks, and the development of standards for safety and performance. Finally, the review concludes with a forward-looking perspective on the potential impacts of flexible and stretchable resistive electronics in hydrogen energy systems and safety applications, underscoring the need for interdisciplinary collaboration to realize the full potential of this innovative technology.
RESUMEN
Recent breakthroughs in the genetic manipulation of mitochondrial DNA (mtDNA) have enabled the precise introduction of base substitutions and the effective removal of genomes carrying harmful mutations. However, the reconstitution of mtDNA deletions responsible for severe mitochondrial myopathies and age-related diseases has not yet been achieved in human cells. Here, we developed a method to engineer specific mtDNA deletions in human cells by co-expressing end-joining (EJ) machinery and targeted endonucleases. As a proof-of-concept, we used mito-EJ and mito-ScaI to generate a panel of clonal cell lines harboring a â¼3.5 kb mtDNA deletion with the full spectrum of heteroplasmy. Investigating these isogenic cells revealed a critical threshold of â¼75% deleted genomes, beyond which cells exhibited depletion of OXPHOS proteins, severe metabolic disruption, and impaired growth in galactose-containing media. Single-cell multiomic analysis revealed two distinct patterns of nuclear gene deregulation in response to mtDNA deletion accumulation; one triggered at the deletion threshold and another progressively responding to increasing heteroplasmy. In summary, the co-expression of mito-EJ and programable nucleases provides a powerful tool to model disease-associated mtDNA deletions in different cell types. Establishing a panel of cell lines with a large-scale deletion at varying levels of heteroplasmy is a valuable resource for understanding the impact of mtDNA deletions on diseases and guiding the development of potential therapeutic strategies. Highlights: Combining prokaryotic end-joining with targeted endonucleases generates specific mtDNA deletions in human cellsEngineering a panel of cell lines with a large-scale deletion that spans the full spectrum of heteroplasmy75% heteroplasmy is the threshold that triggers mitochondrial and cellular dysfunctionTwo distinct nuclear transcriptional programs in response to mtDNA deletions: threshold-triggered and heteroplasmy-sensing.
RESUMEN
Gangliosides in the brain play a crucial role in modulating the integrity of vertebrate central nervous system in a region-specific manner. However, to date, a comprehensive structural elucidation of complex intact ganglioside isomers has not been achieved, resulting in the elusiveness into related molecular mechanism. Here, we present a glycolipidomic approach for isomer-specific and brain region-specific profiling of the mouse brain. Considerable region-specificity and commonality in specific group of regions are highlighted. Notably, we observe a similarity in the abundance of major isomers, GD1a and GD1b, within certain regions, which provides significant biological implications with interpretation through the lens of a theoretical retrosynthetic state-transition network. Furthermore, A glycocentric-omics approaches using gangliosides and N-glycans reveal a remarkable convergence in spatial dynamics, providing valuable insight into molecular interaction network. Collectively, this study uncovers the spatial dynamics of intact glyco-conjugates in the brain, which are relevant to regional function and accelerates the discovery of potential therapeutic targets for brain diseases.
Asunto(s)
Encéfalo , Gangliósidos , Lipidómica , Animales , Encéfalo/metabolismo , Ratones , Gangliósidos/metabolismo , Gangliósidos/química , Lipidómica/métodos , Polisacáridos/metabolismo , Polisacáridos/química , Ratones Endogámicos C57BL , Glicómica/métodos , Masculino , IsomerismoRESUMEN
Tumor-associated macrophages (TAMs) are prime therapeutic targets due to their pro-tumorigenic functions, but varying efficacy of macrophage-targeting therapies highlights our incomplete understanding of how macrophages are regulated within the tumor microenvironment (TME). The circadian clock is a key regulator of macrophage function, but how circadian rhythms of macrophages are influenced by the TME remains unknown. Here, we show that conditions associated with the TME such as polarizing stimuli, acidic pH, and lactate can alter circadian rhythms in macrophages. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate pH-driven changes in circadian rhythms are not mediated solely by cAMP signaling. Remarkably, circadian disorder of TAMs was revealed by clock correlation distance analysis. Our data suggest that heterogeneity in circadian rhythms within the TAM population level may underlie this circadian disorder. Finally, we report that circadian regulation of macrophages suppresses tumor growth in a murine model of pancreatic cancer. Our work demonstrates a novel mechanism by which the TME influences macrophage biology through modulation of circadian rhythms.
RESUMEN
Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To demonstrate the performance of our approach, we present a rapid and cost-effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring acute cardiac damage and assessing cardiovascular risk. The hs-VFA includes a colorimetric paper-based sensor, a portable reader with time-lapse imaging, and computational algorithms for digital assay validation and outlier detection. Operating at the level of a rapid at-home test, the hs-VFA enabled the accurate quantification of cTnI using 50 µL of serum within 15 min per test and achieved a detection limit of 0.2 pg/mL, enabled by gold ion amplification chemistry and time-lapse imaging. It also achieved high precision with a coefficient of variation of <7% and a very large dynamic range, covering cTnI concentrations over 6 orders of magnitude, up to 100 ng/mL, satisfying clinical requirements. In blinded testing, this computational hs-VFA platform accurately quantified cTnI levels in patient samples and showed a strong correlation with the ground truth values obtained by a benchtop clinical analyzer. This nanoparticle amplification-based computational hs-VFA platform can democratize access to high-sensitivity point-of-care diagnostics and provide a cost-effective alternative to laboratory-based biomarker testing.
Asunto(s)
Aprendizaje Profundo , Papel , Pruebas en el Punto de Atención , Troponina I , Humanos , Troponina I/sangre , Troponina I/análisis , Técnicas Biosensibles/instrumentación , Límite de Detección , Oro/química , Biomarcadores/sangre , Colorimetría/instrumentación , Colorimetría/métodos , Nanopartículas/químicaRESUMEN
High-oxygen-permeability ionomers (HOPIs) are being actively developed to enhance the performance and durability of high-power polymer electrolyte membrane fuel cells (PEMFCs). While methods for evaluating binder performance are well-established, techniques for assessing binder durability and measuring its degradation in situ during the AST process remain limited. This study examines the distribution of relaxation times (DRT) and Warburg-like response (WLR) methods as in situ analysis techniques during the catalyst-accelerated stress test (AST) process. We conducted catalyst-ASTs (0.6-0.95 V cycling) for 20,000 cycles, monitoring changes using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Contrary to expectations, during the catalyst-AST, the ion transport resistance of the binder decreased, indicating no binder degradation. Scanning electron microscopy/energy dispersive spectrometer (SEM/EDS) analysis revealed that the degradation rate of the catalyst and the support was relatively higher than that of the binder, leading to a reduction in catalyst layer thickness and improved binder network formation. By applying the DRT method during the catalyst-AST process, we were able to measure the increase in oxygen reduction reaction (ORR) resistance and the decrease in proton transport resistance in situ. This allowed for the real-time detection of the reduction in catalyst layer thickness and improvements in ionomer networks due to catalyst and support degradation. These findings provide new insights into the complex interplay between catalyst degradation and binder performance, contributing to the development of more durable PEMFC components.
RESUMEN
Stromal cells play a critical role in the tumor microenvironment of breast cancer (BC), as they are recruited by tumor cells and regulate the metastatic spread. Though high expression of α-parvin, a member of the parvin family of actin-binding proteins, is reported to be associated with a poor prognosis and metastasis in several cancers, its role in carcinogenesis has not been thoroughly explored. Therefore, we aimed to examine the expression of α-parvin in BC patients by compartmentalizing and quantifying tissues to determine whether α-parvin can be a potential therapeutic target. We performed immunohistochemical (IHC) staining of α-parvin in BC tissues, and the IHC scores were calculated in the overall tissue, stroma, and epithelium using image analysis software. The expression of α-parvin was significantly higher in BC tissues (p = 0.0002) and BC stroma (p < 0.0001) than in normal tissues. Furthermore, all α-parvin scores were significantly positively correlated with the proliferation marker Ki67. The overall and stroma scores are associated with the tumor, (lymph) node, and metastasis (TNM) classification, stage, and grade. These results suggest that high expression of α-parvin in stroma is associated with BCs and might be a new predictive marker for diagnosing BC.
Asunto(s)
Neoplasias de la Mama , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Adulto , Proteínas de Microfilamentos/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Anciano , Microambiente Tumoral , Antígeno Ki-67/metabolismo , InmunohistoquímicaRESUMEN
Fossil resources must be replaced by renewable resources in production systems to mitigate green-house gas emissions and combat climate change. Electro-fermentation utilizes a bioelectrochemical system (BES) to valorize industrial and municipal waste. Current electro-fermentation research is mainly focused on microbial electrosynthesis using CO2 for producing commodity chemicals and replacing petroleum-based infrastructures. However, slow production rates and low titers of metabolites during CO2-based microbial electrosynthesis impede its implementation to the real application in the near future. On the other hand, CO is a highly reactive gas and an abundant feedstock discharged from fossil fuel-based industry. Here, we investigated CO and CO2 electro-fermentation, using a CO-enriched culture. Fresh cow fecal waste was enriched under an atmosphere of 50% CO and 20% CO2 in N2 using serial cultivation. The CO-enriched culture was dominated by Clostridium autoethanogenum (≥89%) and showed electro-activity in a BES reactor with CO2 sparging. When 50% CO was included in the 20% CO2 gas with 10 mA applied current, acetate and ethanol were produced up to 12.9 ± 2.7 mM and 2.7 ± 1.1 mM, respectively. The coulombic efficiency was estimated to 148% ± 8% without an electron mediator. At 25 mA, the culture showed faster initial growth and acetate production but no ethanol production, and only at 86% ± 4% coulombic efficiency. The maximum optical density (OD) of 10 mA and 25 mA reactors were 0.29 ± 0.07 and 0.41 ± 0.03, respectively, whereas it was 0.77 ± 0.19 without electric current. These results show that CO electro-fermentation at low current can be an alternative way of valorizing industrial waste gas using a bioelectrochemical system.
RESUMEN
Chronic inflammatory milieu in the tumor microenvironment (TME) leads to the recruitment and differentiation of myeloid-derived suppressor cells (MDSCs). Polymorphonuclear (PMN)-MDSCs, which are phenotypically and morphologically defined as a subset of neutrophils, cause major immune suppression in the TME, posing a significant challenge in the development of effective immunotherapies. Despite recent advances in our understanding of PMN-MDSC functions, the mechanism that gives rise to immunosuppressive neutrophils within the TME remains elusive. Both in vivo and in vitro, newly recruited neutrophils into the tumor sites remained activated and highly motile for several days and developed immunosuppressive phenotypes, as indicated by increased arginase 1 (Arg1) and dcTrail-R1 expression and suppressed anticancer CD8 T cell cytotoxicity. The strong suppressive function was successfully recapitulated by incubating naive neutrophils with cancer cell culture supernatant in vitro. Cancer metabolite secretome analyses of the culture supernatant revealed that both murine and human cancers released lipid mediators to induce the differentiation of immunosuppressive neutrophils. Liquid chromatography-mass spectrometry (LC-MS) lipidomic analysis identified platelet-activation factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) as a common tumor-derived lipid mediator that induces neutrophil differentiation. Lysophosphatidylcholine acyltransferase 2 (LPCAT2), the PAF biosynthetic enzyme, is up-regulated in human pancreatic ductal adenocarcinoma (PDAC) and shows an unfavorable correlation with patient survival across multiple cancer types. Our study identifies PAF as a lipid-driven mechanism of MDSC differentiation in the TME, providing a potential target for cancer immunotherapy.
Asunto(s)
Diferenciación Celular , Células Supresoras de Origen Mieloide , Neutrófilos , Factor de Activación Plaquetaria , Microambiente Tumoral , Neutrófilos/inmunología , Neutrófilos/metabolismo , Humanos , Animales , Ratones , Microambiente Tumoral/inmunología , Factor de Activación Plaquetaria/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Collateral status (CS) plays a crucial role in infarct growth rate, risk of postthrombectomy hemorrhage, and overall clinical outcomes in patients with acute ischemic stroke (AIS) secondary to anterior circulation large-vessel occlusions (LVOs). Hypoperfusion intensity ratio has been previously validated as an indirect noninvasive pretreatment imaging biomarker of CS. In addition to imaging, derangements in admission laboratory findings can also influence outcomes in patients with AIS-LVO. Therefore, our study aims to assess the relationship between admission laboratory findings, baseline characteristics, and CS, as assessed by hypoperfusion intensity ratio in patients with AIS-LVO. METHODS AND RESULTS: In this retrospective study, consecutive patients presenting with AIS secondary to anterior circulation LVO who underwent pretreatment computed tomography perfusion were included. The computed tomography perfusion data processed by RAPID (Ischema View, Menlo Park, CA) generated the hypoperfusion intensity ratio. Binary logistic regression models were used to assess the relationship between patients' baseline characteristics, admission laboratory findings, and poor CS. A total of 221 consecutive patients with AIS-LVO between January 2017 and September 2022 were included in our study (mean±SD age, 67.0±15.8 years; 119 men [53.8%]). Multivariable logistic regression showed that patients with AIS caused by cardioembolic and cryptogenic causes (adjusted odds ratio [OR], 2.67; 95% CI, 1.20-5.97; P=0.016), those who presented with admission National Institutes of Health Stroke Scale score ≥12 (adjusted OR, 3.12; 95% CI, 1.61-6.04; P=0.001), and male patients (adjusted OR, 2.06; 95% CI, 1.13-3.77; P=0.018) were associated with poor CS. CONCLUSIONS: Stroke caused by cardioembolic or cryptogenic causes, admission National Institutes of Health Stroke Scale score of ≥12, and male sex were associated with poor CS, as defined by hypoperfusion intensity ratio in the patients with AIS-LVO.
Asunto(s)
Circulación Cerebrovascular , Circulación Colateral , Accidente Cerebrovascular Isquémico , Humanos , Masculino , Femenino , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Circulación Cerebrovascular/fisiología , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Anciano de 80 o más Años , Imagen de Perfusión/métodos , Angiografía por Tomografía ComputarizadaRESUMEN
BACKGROUND: Deficiency of adenosine deaminase (ADA or ADA1) has broad clinical and genetic heterogeneity. Screening techniques can identify asymptomatic infants whose phenotype and prognosis are indeterminate, and who may carry ADA variants of unknown significance. OBJECTIVE: We systematically assessed the pathogenic potential of rare ADA missense variants to better define the relationship of genotype to red blood cell (RBC) total deoxyadenosine nucleotide (dAXP) content and to phenotype. METHODS: We expressed 46 ADA missense variants in the ADA-deficient SØ3834 strain of Escherichia coli and defined genotype categories (GCs) ranked I to IV by increasing expressed ADA activity. We assessed relationships among GC rank, RBC dAXP, and phenotype in 58 reference patients with 50 different genotypes. We used our GC ranking system to benchmark AlphaMissense for predicting variant pathogenicity, and we used a minigene assay to identify exonic splicing variants in ADA exon 9. RESULTS: The 46 missense variants expressed â¼0.001% to â¼70% of wild-type ADA activity (40% had <0.05% of wild-type ADA activity and 50% expressed >1%). RBC dAXP ranged from undetectable to >75% of total adenine nucleotides and correlated well with phenotype. Both RBC dAXP and clinical severity were inversely related to total ADA activity expressed by both inherited variants. Our GC scoring system performed better than AlphaMissense in assessing variant pathogenicity, particularly for less deleterious variants. CONCLUSION: For ADA deficiency, pathogenicity is a continuum and conditional, depending on the total ADA activity contributed by both inherited variants as indicated by GC rank. However, in patients with indeterminate phenotype identified by screening, RBC dAXP measured at diagnosis may have greater prognostic value than GC rank.
RESUMEN
The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of cystic fibrosis (CF). The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex (EMC), which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.
RESUMEN
The initial delivery of small-scale magnetic devices such as microrobots is a key, but often overlooked, aspect for their use in clinical applications. The deployment of these devices within the dynamic environment of the human body presents significant challenges due to their dispersion caused by circulatory flows. Here, a method is introduced to effectively deliver a swarm of magnetic nanoparticles in fluidic flows. This approach integrates a magnetically navigated robotic microcatheter equipped with a reservoir for storing the magnetic nanoparticles. The microfluidic flow within the reservoir facilitates the injection of magnetic nanoparticles into the fluid stream, and a magnetic field gradient guides the swarm through the oscillatory flow to a target site. The microcatheter and reservoir are engineered to enable magnetic steering and injection of the magnetic nanoparticles. To demonstrate this approach, experiments are conducted utilizing a spinal cord phantom simulating intrathecal catheter delivery for applications in the central nervous system. These results demonstrate that the proposed microcatheter successfully concentrates nanoparticles near the desired location through the precise manipulation of magnetic field gradients, offering a promising solution for the controlled deployment of untethered magnetic micro-/nanodevices within the complex physiological circulatory systems of the human body.
Asunto(s)
Catéteres , Diseño de Equipo , Humanos , Diseño de Equipo/métodos , Fantasmas de Imagen , Magnetismo/métodos , Magnetismo/instrumentación , Robótica/métodos , Robótica/instrumentación , Campos Magnéticos , Nanopartículas de MagnetitaRESUMEN
Objectives: This study aimed to analyze the association between alcohol use disorder (AUD) and suicidal ideation (SI) in the general Korean population. Methods: The 2022 Mental Health Awareness Survey was collected from the Chungcheongnam-do Mental Health Welfare Center (CHMHC). Before Propensity Score Matching (PSM), 823 participants were included in this study. After 1:4 PSM, the 255 participants were analyzed using the chi-square test and matched conditional logistic regression. Results: The AUD group had higher odds of experiencing SI than the non-AUD (adjusted odds ratio [AOR]: 2.40, 95% confidence intervals [CI]: 1.10-5.22). Stratified matched conditional logistic regression showed that, among the female, <40 years and single group, the AUD group was more likely to experience SI compared with the non-AUD, respectively (AOR:3.53, 95% CI: 1.20-10.44/AOR:3.45, 95% CI: 1.03-11.55/AOR:4.83, 95% CI: 1.18-19.69). However, among the male, ≥40 years and married group, we discovered no association between AUD and SI. Conclusions: Through this study, we found a strong association between the AUD group and SI. This association was particularly strong among female, <40 years, and single groups. This study elucidates the relationship between AUD and SI in the Chungnam region, which had not been previously identified in Korea, and it is expected to serve as foundational data for reducing the high suicide rate in this region. However, due to the limitation of being a cross-sectional study, future longitudinal research is required.
RESUMEN
Whole-genome doubling (WGD) is a critical driver of tumor development and is linked to drug resistance and metastasis in solid malignancies. Here, we demonstrate that WGD is an ongoing mutational process in tumor evolution. Using single-cell whole-genome sequencing, we measured and modeled how WGD events are distributed across cellular populations within tumors and associated WGD dynamics with properties of genome diversification and phenotypic consequences of innate immunity. We studied WGD evolution in 65 high-grade serous ovarian cancer (HGSOC) tissue samples from 40 patients, yielding 29,481 tumor cell genomes. We found near-ubiquitous evidence of WGD as an ongoing mutational process promoting cell-cell diversity, high rates of chromosomal missegregation, and consequent micronucleation. Using a novel mutation-based WGD timing method, doubleTime , we delineated specific modes by which WGD can drive tumor evolution: (i) unitary evolutionary origin followed by significant diversification, (ii) independent WGD events on a pre-existing background of copy number diversity, and (iii) evolutionarily late clonal expansions of WGD populations. Additionally, through integrated single-cell RNA sequencing and high-resolution immunofluorescence microscopy, we found that inflammatory signaling and cGAS-STING pathway activation result from ongoing chromosomal instability and are restricted to tumors that remain predominantly diploid. This contrasted with predominantly WGD tumors, which exhibited significant quiescent and immunosuppressive phenotypic states. Together, these findings establish WGD as an evolutionarily 'active' mutational process that promotes evolvability and dysregulated immunity in late stage ovarian cancer.
RESUMEN
Lack of Factor VIII (FVIII) concentrates is one of limiting factors for Hemophilia A prophylaxis in resource-limited countries. Rondaptivon pegol (BT200) is a pegylated aptamer and has been shown to elevate the level of von Willebrand Factor (VWF) and FVIII in previous studies. A population pharmacokinetic model for BT200 was built and linked to the kinetic models of VWF and FVIII based on reasonable assumptions. The developed PK/PD model for BT200 described the observed kinetic of BT200, VWF, and FVIII in healthy volunteers and patients with mild-to-moderate hemophilia A from two clinical trials. The developed model was evaluated using an external dataset in patients with severe hemophilia A taking recombinant FVIII products. The developed and evaluated PK/PD model was able to describe and predict concentration-time profiles of BT200, VWF, and FVIII in healthy volunteers and patients with hemophilia A. Concentration-time profiles of FVIII were then predicted following coadministration of plasma-derived FVIII concentrate and BT200 under various dosing scenarios in virtual patients with severe hemophilia A. Plasma-derived products, that contain VWF, are more accessible in low-resource countries as compared to their recombinant counterparts. The predicted time above 1 and 3 IU/dL FVIII in one week was compared between scenarios in the absence and presence of BT200. A combination dose of 6 mg BT200 once weekly plus 10 IU/kg plasma-derived FVIII twice weekly maintained similar coverage to a 30 IU/kg FVIII thrice weekly dose in absence of BT200, representing only 22% of the FVIII dose per week.
Asunto(s)
Factor VIII , Hemofilia A , Factor de von Willebrand , Humanos , Factor VIII/farmacocinética , Factor VIII/administración & dosificación , Hemofilia A/tratamiento farmacológico , Hemofilia A/sangre , Factor de von Willebrand/farmacocinética , Factor de von Willebrand/administración & dosificación , Modelos Biológicos , Adulto , Masculino , Adulto Joven , Cinética , Polietilenglicoles/farmacocinética , Polietilenglicoles/administración & dosificación , AdolescenteRESUMEN
Cystic Fibrosis (CF) is a lethal genetic disorder caused by variants in CF transmembrane conductance regulator (CFTR). Many disease variants are treatable with corrector compounds, which enhance the folding and trafficking of CFTR. However, correctors fail to elicit a response for every CFTR variant. Approximately 3% of persons with CF harbor poorly responsive CFTR variants. Here, we reveal that a group of poorly responsive variants overlap with selectively responsive variants in a critical domain interface (nucleotide-binding domain 1/intracellular loop 4 - NBD1/ICL4). Affinity purification mass spectrometry proteomics was used to profile the protein homeostasis (proteostasis) changes of CFTR variants during corrector treatment to assess modulated interactions with protein folding and maturation pathways. Responsive variant interactions converged on similar proteostasis pathways during correction. In contrast, poorly responsive variants subtly diverged, revealing a partial restoration of protein quality control surveillance and a capacity to correct some mutations. Computational structural modeling showed that corrector VX-445 failed to confer enough NBD1 stability to poorly responsive variants. NBD1 secondary stabilizing mutations rescued poorly responsive variants, revealing structural vulnerabilities in NBD1 required for treating poor responders. Our study provides a framework for discerning the underlying protein quality control and structural defects of CFTR variants not reached with existing drugs. These insights can help expand therapeutics to all susceptible CFTR variants to enhance personalized medicine efforts.