Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(12): e202319707, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38294268

RESUMEN

Fast charging technology for electric vehicles (EVs), offering rapid charging times similar to conventional vehicle refueling, holds promise but faces obstacles owing to kinetic issues within lithium-ion batteries (LIBs). Specifically, the significance of cathode materials in fast charging has grown because Ni-rich cathodes are employed to enhance the energy density of LIBs. Herein, the mechanism behind the loss of fast charging capability of Ni-rich cathodes during extended cycling is investigated through a comparative analysis of Ni-rich cathodes with different microstructures. The results revealed that microcracks and the resultant cathode deterioration significantly compromised the fast charging capability over extended cycling. When thick rocksalt impurity phases form throughout the particles owing to electrolyte infiltration via microcracks, the limited kinetics of Li+ ions create electrochemically unreactive areas under high-current conditions, resulting in the loss of fast charging capability. Hence, preventing microcrack formation by tailoring microstructures is essential to ensure stability in fast charging capability. Understanding the relationship between microcracks and the loss of fast charging capability is essential for developing Ni-rich cathodes that facilitate stable fast charging upon extended cycling, thereby promoting widespread EV adoption.

2.
Angew Chem Int Ed Engl ; 62(52): e202314480, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37955417

RESUMEN

Deploying Ni-enriched (Ni≥95 %) layered cathodes for high energy-density lithium-ion batteries (LIBs) requires resolving a series of technical challenges. Among them, the structural weaknesses of the cathode, vigorous reactivity of the labile Ni4+ ion species, gas evolution and associated cell swelling, and thermal instability issues are critical obstacles that must be solved. Herein, we propose an intuitive strategy that can effectively ameliorate the degradation of an extremely high-Ni-layered cathode, the construction of ultrafine-scale microstructure and subsequent intergranular shielding of grains. The formation of ultrafine grains in the Ni-enriched Li[Ni0.96 Co0.04 ]O2 (NC96) cathode, achieved by impeding particle coarsening during cathode calcination, noticeably improved the mechanical durability and electrochemical performance of the cathode. However, the buildup of the strain-resistant microstructure in Mo-doped NC96 concurrently increased the cathode-electrolyte contact area at the secondary particle surface, which adversely accelerated parasitic reactions with the electrolyte. The intergranular protection of the refined microstructure resolved the remaining chemical instability of the Mo-doped NC96 cathode by forming an F-induced coating layer, effectively alleviating structural degradation and gas generation, thereby extending the battery's lifespan. The proposed strategies synergistically improved the structural and chemical durability of the NC96 cathode, satisfying the energy density, life cycle performance, and safety requirements for next-generation LIBs.

3.
Obstet Gynecol Sci ; 59(6): 535-538, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27896258

RESUMEN

We report on an abdominal pregnancy in human immunodeficiency virus-positive mother, currently on antiretroviral therapy, which was discovered incidentally while training the obstetric ultrasound capacity building program. Although abdominal pregnancy is a rare form of ectopic pregnancy, it may be more common in women with HIV infection because they tend to have a higher rate of sexually transmitted diseases than the general population. The positive diagnosis of abdominal pregnancy is difficult to establish and is usually missed during prenatal assessment particularly in settings that lack routine ultrasound examination as is the case in most developing countries. For the management of abdominal pregnancy, surgical intervention is recommended and removal of the placenta is a key controversy. Ultrasonography is considered the front-line and most effective imaging method and an awareness with a high index of suspicion of abdominal pregnancy is vital for reducing associated high maternal and even higher perinatal mortality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA