Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(11): 4989-4994, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138083

RESUMEN

Solid-state electrolytes that exhibit high ionic conductivities at room temperature are key materials for obtaining the next generation of safer, higher-specific-energy solid-state batteries. However, the number of currently available crystal structures for use as superionic conductors remains limited. Here, we report a lithium superionic conductor, Li2SiS3, with tetragonal crystal symmetry, which possesses a new three-dimensional framework structure consisting of isolated edge-sharing tetrahedral dimers. This species exhibits an anomalously high ionic conductivity of 2.4 mS cm-1 at 298 K, which is 3 orders of magnitude higher than the reported ionic conductivity for its orthorhombic polymorph. The framework of this conductor consists mainly of silicon, which is abundant in natural resources, and its further optimization may lead to the development of new solid-state electrolytes for large-scale applications.

2.
ACS Appl Mater Interfaces ; 9(50): 44161-44172, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29182242

RESUMEN

The roles of a partially fluorinated ether (PFE) based on a mixture of 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane and 2-(difluoro(methoxy)methyl)-1,1,1,2,3,3,3-heptafluoropropane on the oxidative durability of an electrolyte under high-voltage conditions, the rate capability of the graphite and 5 V-class LiNi0.4Mn1.6O4 (LNMO) electrodes, and the cycling performance of graphite/LNMO full cells are examined. Our findings indicate that the use of PFE as a cosolvent in the electrolyte yields thermally stable electrolytes with self-extinguishing ability. Electrochemical tests confirm that the PFE combined with fluoroethylene carbonate (FEC) effectively alleviates the oxidative decomposition of the electrolyte at the high-voltage LNMO cathode and enables reversible electrochemical reactions of the graphite anodes and LNMO cathodes at high rates. Moreover, the combination of PFE, which mitigates electrolyte decomposition at high voltages, and FEC, which stabilizes the anode-electrolyte interface, enables the reversible cycling of high-voltage full cells (graphite/LNMO) with a capacity retention of 70.3% and a high Coulombic efficiency of 99.7% after 100 cycles at 1C rate at 30 °C.

3.
ACS Appl Mater Interfaces ; 6(4): 2546-52, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24460052

RESUMEN

LiNi0.6Co0.2Mn0.2O2 cathode materials were surface-modified by coating with a dual conductive poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol) (PEDOT-co-PEG) copolymer, and their resulting electrochemical properties were investigated. The surface-modified LiNi0.6Co0.2Mn0.2O2 cathode material exhibited a high discharge capacity and good high rate performance due to enhanced transport of Li(+) ions as well as electrons. The presence of a protective conducting polymer layer formed on the cathode also suppressed the growth of a resistive layer and inhibited the dissolution of transition metals from the active cathode materials, which resulted in more stable cycling characteristics than the pristine LiNi0.6Co0.2Mn0.2O2 cathode material at 55 (o)C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...