Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1349312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476262

RESUMEN

Many adult lung diseases involve dysregulated lung repair. Deciphering the molecular and cellular mechanisms that govern intrinsic lung repair is essential to develop new treatments to repair/regenerate the lungs. Aberrant Wnt signalling is associated with lung diseases including emphysema, idiopathic pulmonary fibrosis and pulmonary arterial hypertension but how Wnt signalling contributes to these diseases is still unclear. There are several alternative pathways that can be stimulated upon Wnt ligand binding, one of these is the Planar Cell Polarity (PCP) pathway which induces actin cytoskeleton remodelling. Wnt5a is known to stimulate the PCP pathway and this ligand is of particular interest in regenerative lung biology because of its association with lung diseases and its role in the alveolar stem cell niche. To decipher the cellular mechanisms through which Wnt5a and the PCP pathway affect alveolar repair we utilised a 3-D ex-vivo model of lung injury and repair, the AIR model. Our results show that Wnt5a specifically enhances the alveolar epithelial progenitor cell population following injury and surprisingly, this function is attenuated but not abolished in Looptail (Lp) mouse lungs in which the PCP pathway is dysfunctional. However, Lp tracheal epithelial cells show reduced stiffness and Lp alveolar epithelial cells are less migratory than wildtype (WT), indicating that Lp lung epithelial cells have a reduced capacity for repair. These findings provide important mechanistic insight into how Wnt5a and the PCP pathway contribute to lung repair and indicate that these components of Wnt signalling may be viable targets for the development of pro-repair treatments.

2.
Obes Sci Pract ; 10(1): e711, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263995

RESUMEN

Background: Daily weighing has been shown to help with weight management. In primary care, the majority of virtual visits will ask patients about their weight. However, little is known about whether patients, especially those in the Hispanic/Latino population, have access to a weight scale. Our aim was to determine scale access and perceived height and weight in the Hispanic/Latino population attending a volunteer, no cost, community clinic. Methods: Questionnaires were issued to patients attending the community clinic and a comparator group attending a medically insured primary care practice. Results: Only 52% of the Hispanic/Latino patients attending the community clinic had access to a scale compared with 85% of patients in the primary care office. Patients underreported weight and overreported height leading to underreporting body mass index by 0.6 ± 3.2 kg/m2. Conclusions: Healthcare providers who care for uninsured Hispanic/Latino patients in community clinics may need to be aware that patients may not have access to a scale.

3.
Front Med (Lausanne) ; 10: 1091463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089589

RESUMEN

Aim: Neuroinflammation plays a key role in both the pathogenesis and the progression of cerebral cavernous malformations (CCM). Flutriciclamide ([18F]GE-180) is a translocator protein (TSPO) targeting positron emission tomography (PET) tracer, developed for imaging neuroinflammation. The objectives of this study were to describe characteristics of flutriciclamide uptake in different brain tissue regions in CCM patients compared to controls, and to evaluate flutriciclamide uptake and iron deposition within CCM lesions. Materials and methods: Five patients with CCM and six controls underwent a 60 or 90 min continuous PET/MRI scan following 315 ± 68.9 MBq flutriciclamide administration. Standardized uptake value (SUV) and standardized uptake value ratio (SUVr) were obtained using the striatum as a pseudo-reference. Quantitative susceptibility maps (QSM) were used to define the location of the vascular malformation and calculate the amount of iron deposition in each lesion. Results: Increased flutriciclamide uptake was observed in all CCM lesions. The temporal pole demonstrated the highest radiotracer uptake; the paracentral lobule, cuneus and hippocampus exhibited moderate uptake; while the striatum had the lowest uptake, with average SUVs of 0.66, 0.55, 0.63, 0.55, and 0.33 for patient with CCM and 0.57, 0.50, 0.48, 0.42, and 0.32 for controls, respectively. Regional SUVr showed similar trends. The average SUV and QSM values in CCM lesions were 0.58 ± 0.23 g/ml and 0.30 ± 0.10 ppm. SUVs and QSM were positively correlated in CCM lesions (r = 0.53, p = 0.03). Conclusion: The distribution of flutriciclamide ([18F]GE-180) in the human brain and CCM lesions demonstrated the potential of this TSPO PET tracer as a marker of neuroinflammation that may be relevant for characterizing CCM disease progression along with QSM.

4.
Cells ; 11(18)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139471

RESUMEN

Aging is a complex feature and involves loss of multiple functions and nonreversible phenotypes. However, several studies suggest it is possible to protect against aging and promote rejuvenation. Aging is associated with many factors, such as telomere shortening, DNA damage, mitochondrial dysfunction, and loss of homeostasis. The integrity of the cytoskeleton is associated with several cellular functions, such as migration, proliferation, degeneration, and mitochondrial bioenergy production, and chronic disorders, including neuronal degeneration and premature aging. Cytoskeletal integrity is closely related with several functional activities of cells, such as aging, proliferation, degeneration, and mitochondrial bioenergy production. Therefore, regulation of cytoskeletal integrity may be useful to elicit antiaging effects and to treat degenerative diseases, such as dementia. The actin cytoskeleton is dynamic because its assembly and disassembly change depending on the cellular status. Aged cells exhibit loss of cytoskeletal stability and decline in functional activities linked to longevity. Several studies reported that improvement of cytoskeletal stability can recover functional activities. In particular, microtubule stabilizers can be used to treat dementia. Furthermore, studies of the quality of aged oocytes and embryos revealed a relationship between cytoskeletal integrity and mitochondrial activity. This review summarizes the links of cytoskeletal properties with aging and degenerative diseases and how cytoskeletal integrity can be modulated to elicit antiaging and therapeutic effects.


Asunto(s)
Citoesqueleto , Demencia , Senescencia Celular/fisiología , Citoesqueleto/fisiología , Humanos , Acortamiento del Telómero
5.
Nat Biomed Eng ; 6(9): 1045-1056, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817962

RESUMEN

Autophagy-the lysosomal degradation of cytoplasmic components via their sequestration into double-membraned autophagosomes-has not been detected non-invasively. Here we show that the flux of autophagosomes can be measured via magnetic resonance imaging or serial near-infrared fluorescence imaging of intravenously injected iron oxide nanoparticles decorated with cathepsin-cleavable arginine-rich peptides functionalized with the near-infrared fluorochrome Cy5.5 (the peptides facilitate the uptake of the nanoparticles by early autophagosomes, and are then cleaved by cathepsins in lysosomes). In the heart tissue of live mice, the nanoparticles enabled quantitative measurements of changes in autophagic flux, upregulated genetically, by ischaemia-reperfusion injury or via starvation, or inhibited via the administration of a chemotherapeutic or the antibiotic bafilomycin. In mice receiving doxorubicin, pre-starvation improved cardiac function and overall survival, suggesting that bursts of increased autophagic flux may have cardioprotective effects during chemotherapy. Autophagy-detecting nanoparticle probes may facilitate the further understanding of the roles of autophagy in disease.


Asunto(s)
Autofagia , Colorantes Fluorescentes , Nanopartículas , Espectroscopía Infrarroja Corta , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Arginina/química , Autofagia/efectos de los fármacos , Carbocianinas/química , Catepsinas/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Colorantes Fluorescentes/química , Macrólidos/administración & dosificación , Macrólidos/farmacología , Imagen por Resonancia Magnética/métodos , Ratones , Nanopartículas/química , Espectroscopía Infrarroja Corta/métodos
6.
J Cell Sci ; 135(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35019142

RESUMEN

Current medicine has only taken us so far in reducing disease and tissue damage. Extracellular vesicles (EVs), which are membranous nanostructures produced naturally by cells, have been hailed as a next-generation medicine. EVs deliver various biomolecules, including proteins, lipids and nucleic acids, which can influence the behaviour of specific target cells. Since EVs not only mirror composition of their parent cells but also modify the recipient cells, they can be used in three key areas of medicine: regenerative medicine, disease detection and drug delivery. In this Review, we discuss the transformational and translational progress witnessed in EV-based medicine to date, focusing on two key elements: the mechanisms by which EVs aid tissue repair (for example, skin and bone tissue regeneration) and the potential of EVs to detect diseases at an early stage with high sensitivity and specificity (for example, detection of glioblastoma). Furthermore, we describe the progress and results of clinical trials of EVs and demonstrate the benefits of EVs when compared with traditional medicine, including cell therapy in regenerative medicine and solid biopsy in disease detection. Finally, we present the challenges, opportunities and regulatory framework confronting the clinical application of EV-based products.


Asunto(s)
Vesículas Extracelulares , Medicina Regenerativa , Proteínas , Cicatrización de Heridas
7.
Med Phys ; 48(10): 6508-6523, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34554568

RESUMEN

PURPOSE: Advances in X-ray phase-contrast imaging can obtain excellent soft-tissue contrast of phase-shift, attenuation, and small-angle scatter. Here, we present fringe patterns for different design parameters of X-ray bi-prism interferometry imaging systems. Our aim is to develop bi-prism interferometry imaging systems with excellent polychromatic performance that produce high-contrast fringes with spatially incoherent X-ray illumination. We also introduce a novel X-ray tube design that uses temporal multiplexing to provide simultaneous virtual "electronic phase stepping" that replace "mechanical phase stepping" popular with grating-based interferometry setups. METHODS: In our investigation, we develop expressions for the irradiance distribution pattern of a bi-prism interferometer composed of multiple point sources and multiple bi-prisms. These expressions are used to plot fringe patterns for X-ray design parameters, including size of point source, number of point sources, and point source separation, and bi-prism design parameters including material, angle, number of bi-prisms, period, and bi-prism array to X-ray source and detector distances. RESULTS: Results show that the fringe patterns for a bi-prism interferometry system are not longitudinally periodic as with grating interferometers that produce a Talbot-Lau carpet. It is also shown that at 59 keV X-rays the bi-prism material should be something comparable to nickel to obtain reasonable fringe visibility. CONCLUSION: The irradiance distribution pattern demonstrates that bi-prism interferometry may provide comparable or improved fringe visibility to that of gratings. Special care is given to present our findings within the context of previous advancements. A single-shot image acquisition approach using a temporal multiplexed, high-power X-ray source provides virtual electronic phase stepping without focal spot sweeping. This provides multiple images, each at the same exposure and the same projection view, from different fringe locations that allow one to derive the attenuation, phase, and dark-field images of the sample without mechanical phase stepping of a grating.


Asunto(s)
Interferometría , Radiografía , Rayos X
8.
Med Phys ; 48(10): 6293-6311, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34407202

RESUMEN

PURPOSE: In this work, we present tomographic simulations of a new hardware concept for X-ray phase-contrast interferometry wherein the phase gratings are replaced with an array of Fresnel biprisms, and Moiré fringe analysis is used instead of "phase stepping" popular with grating-based setups. METHODS: Projections of a phantom consisting of four layers of parallel carbon microfibers is simulated using wave optics representation of X-ray electromagnetic waves. Simulated projections of a phantom with preferential scatter perpendicular to the direction of the fibers are performed to analyze the extraction of small-angle scatter from dark-field projections for the following: (1) biprism interferometry using Moiré fringe analysis; (2) grating interferometry using phase stepping with eight grating steps; and (3) grating interferometry using Moiré fringe analysis. Dark-field projections are modeled as projections of voxel intensities represented by a fixed finite vector basis set of scattering directions. An iterative MLEM algorithm is used to reconstruct, from simulated projection data, the coefficients of a fixed set of seven basis vectors at each voxel representing the small-angle scatter distribution. RESULTS: Results of reconstructed vector coefficients are shown comparing the three simulated imaging configurations. The single-exposure Moiré fringe analysis shows not only an increase in noise because of one-eighth the number of projection samples but also is obtained with less dose and faster acquisition times. Furthermore, replacing grating interferometry with biprism interferometry provides better contrast-to-noise. CONCLUSION: The simulations demonstrate the feasibility of the reconstruction of dark-field data acquired with a biprism interferometry system. With the potential of higher fringe visibility, biprism interferometry with Moiré fringe analysis might provide equal or better image quality to that of phase stepping methods with less imaging time and lower dose.


Asunto(s)
Interferometría , Tomografía Computarizada por Rayos X , Simulación por Computador , Radiografía , Rayos X
9.
Eur J Nucl Med Mol Imaging ; 48(2): 414-420, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32719915

RESUMEN

PURPOSE: Alteration in mitochondrial membrane potential (ΔΨm) is an important feature of many pathologic processes, including heart failure, cardiotoxicity, ventricular arrhythmia, and myocardial hypertrophy. We present the first in vivo, non-invasive, assessment of regional ΔΨm in the myocardium of normal human subjects. METHODS: Thirteen healthy subjects were imaged using [18F]-triphenylphosphonium ([18F]TPP+) on a PET/MR scanner. The imaging protocol consisted of a bolus injection of 300 MBq followed by a 120-min infusion of 0.6 MBq/min. A 60 min, dynamic PET acquisition was started 1 h after bolus injection. The extracellular space fraction (fECS) was simultaneously measured using MR T1-mapping images acquired at baseline and 15 min after gadolinium injection with correction for the subject's hematocrit level. Serial venous blood samples were obtained to calculate the plasma tracer concentration. The tissue membrane potential (ΔΨT), a proxy of ΔΨm, was calculated from the myocardial tracer concentration at secular equilibrium, blood concentration, and fECS measurements using a model based on the Nernst equation. RESULTS: In 13 healthy subjects, average tissue membrane potential (ΔΨT), representing the sum of cellular membrane potential (ΔΨc) and ΔΨm, was - 160.7 ± 3.7 mV, in excellent agreement with previous in vitro assessment. CONCLUSION: In vivo quantification of the mitochondrial function has the potential to provide new diagnostic and prognostic information for several cardiac diseases as well as allowing therapy monitoring. This feasibility study lays the foundation for further investigations to assess these potential roles. Clinical trial identifier: NCT03265431.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Estudios de Factibilidad , Humanos , Potenciales de la Membrana , Miocardio
10.
Biomaterials ; 267: 120480, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33157373

RESUMEN

Research into mechanisms underlying lung injury and subsequent repair responses is currently of paramount importance. There is a paucity of models that bridge the gap between in vitro and in vivo research. Such intermediate models are critical for researchers to decipher the mechanisms that drive repair and to test potential new treatments for lung repair and regeneration. Here we report the establishment of a new tool, the Acid Injury and Repair (AIR) model, that will facilitate studies of lung tissue repair. In this model, injury is applied to a restricted area of a precision-cut lung slice using hydrochloric acid, a clinically relevant driver. The surrounding area remains uninjured, thus mimicking the heterogeneous pattern of injury frequently observed in lung diseases. We show that in response to injury, the percentage of progenitor cells (pro surfactant protein C, proSP-C and TM4SF1 positive) significantly increases in the injured region. Whereas in the uninjured area, the percentage of proSP-C/TM4SF1 cells remains unchanged but proliferating cells (Ki67 positive) increase. These effects are modified in the presence of inhibitors of proliferation (Cytochalasin D) and Wnt secretion (C59) demonstrating that the AIR model is an important new tool for research into lung disease pathogenesis and potential regenerative medicine strategies.


Asunto(s)
Enfermedades Pulmonares , Lesión Pulmonar , Humanos , Pulmón , Células Madre
11.
Curr Protoc Mouse Biol ; 10(4): e85, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33217226

RESUMEN

Recent advances in cell culture models like air-liquid interface culture and ex vivo models such as organoids have advanced studies of lung biology; however, gaps exist between these models and tools that represent the complexity of the three-dimensional environment of the lung. Precision-cut lung slices (PCLS) mimic the in vivo environment and bridge the gap between in vitro and in vivo models. We have established the acid injury and repair (AIR) model where a spatially restricted area of tissue is injured using drops of HCl combined with Pluronic gel. Injury and repair are assessed by immunofluorescence using robust markers, including Ki67 for cell proliferation and prosurfactant protein C for alveolar type 2/progenitor cells. Importantly, the AIR model enables the study of injury and repair in mouse lung tissue without the need for an initial in vivo injury, and the results are highly reproducible. Here, we present detailed protocols for the generation of PCLS and the AIR model. We also describe methods to analyze and quantify injury in AIR-PCLS by immunostaining with established early repair markers and fluorescence imaging. This novel ex vivo model is a versatile tool for studying lung cell biology in acute lung injury and for semi-high-throughput screening of potential therapeutics. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Generation of precision-cut lung slices Basic Protocol 2: The acid injury and repair model Basic Protocol 3: Analysis of AIR-PCLS: Immunostaining and imaging.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Pulmonares/terapia , Lesión Pulmonar/terapia , Animales , Técnicas de Cultivo de Célula , Humanos , Enfermedades Pulmonares/etiología , Lesión Pulmonar/etiología , Ratones
12.
Front Cell Dev Biol ; 8: 577201, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195213

RESUMEN

VANGL2 is a component of the planar cell polarity (PCP) pathway, which regulates tissue polarity and patterning. The Vangl2 Lp mutation causes lung branching defects due to dysfunctional actomyosin-driven morphogenesis. Since the actomyosin network regulates cell mechanics, we speculated that mechanosignaling could be impaired when VANGL2 is disrupted. Here, we used live-imaging of precision-cut lung slices (PCLS) from Vangl2 Lp/+ mice to determine that alveologenesis is attenuated as a result of impaired epithelial cell migration. Vangl2 Lp/+ tracheal epithelial cells (TECs) and alveolar epithelial cells (AECs) exhibited highly disrupted actomyosin networks and focal adhesions (FAs). Functional assessment of cellular forces confirmed impaired traction force generation in Vangl2 Lp/+ TECs. YAP signaling in Vangl2 Lp airway epithelium was reduced, consistent with a role for VANGL2 in mechanotransduction. Furthermore, activation of RhoA signaling restored actomyosin organization in Vangl2 Lp/+ , confirming RhoA as an effector of VANGL2. This study identifies a pivotal role for VANGL2 in mechanosignaling, which underlies the key role of the PCP pathway in tissue morphogenesis.

13.
Artículo en Inglés | MEDLINE | ID: mdl-32574317

RESUMEN

A number of medicines are currently under investigation for the treatment of COVID-19 disease including anti-viral, anti-malarial, and anti-inflammatory agents. While these treatments can improve patient's recovery and survival, these therapeutic strategies do not lead to unequivocal restoration of the lung damage inflicted by this disease. Stem cell therapies and, more recently, their secreted extracellular vesicles (EVs), are emerging as new promising treatments, which could attenuate inflammation but also regenerate the lung damage caused by COVID-19. Stem cells exert their immunomodulatory, anti-oxidant, and reparative therapeutic effects likely through their EVs, and therefore, could be beneficial, alone or in combination with other therapeutic agents, in people with COVID-19. In this review article, we outline the mechanisms of cytokine storm and lung damage caused by SARS-CoV-2 virus leading to COVID-19 disease and how mesenchymal stem cells (MSCs) and their secreted EVs can be utilized to tackle this damage by harnessing their regenerative properties, which gives them potential enhanced clinical utility compared to other investigated pharmacological treatments. There are currently 17 clinical trials evaluating the therapeutic potential of MSCs for the treatment of COVID-19, the majority of which are administered intravenously with only one clinical trial testing MSC-derived exosomes via inhalation route. While we wait for the outcomes from these trials to be reported, here we emphasize opportunities and risks associated with these therapies, as well as delineate the major roadblocks to progressing these promising curative therapies toward mainstream treatment for COVID-19.

14.
Front Physiol ; 11: 491, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499721

RESUMEN

BACKGROUND: We recently reported a method using positron emission tomography (PET) and the tracer 18F-labeled tetraphenylphosphonium (18F-TPP+) for mapping the tissue (i.e., cellular plus mitochondrial) membrane potential (ΔΨT) in the myocardium. The purpose of this work is to provide additional experimental evidence that our methods can be used to observe transient changes in the volume of distribution for 18F-TPP+ and mitochondrial membrane potential (ΔΨm). METHODS: We tested these hypotheses by measuring decreases of 18F-TPP+ concentration elicited when a proton gradient uncoupler, BAM15, is administered by intracoronary infusion during PET scanning. BAM15 is the first proton gradient uncoupler shown to affect the mitochondrial membrane without affecting the cellular membrane potential. Preliminary dose response experiments were conducted in two pigs to determine the concentration of BAM15 infusate necessary to perturb the 18F-TPP+ concentration. More definitive experiments were performed in two additional pigs, in which we administered an intravenous bolus plus infusion of 18F-TPP+ to reach secular equilibrium followed by an intracoronary infusion of BAM15. RESULTS: Intracoronary BAM15 infusion led to a clear decrease in 18F-TPP+ concentration, falling to a lower level, and then recovering. A second BAM15 infusion reduced the 18F-TPP+ level in a similar fashion. We observed a maximum depolarization of 10 mV as a result of the BAM15 infusion. SUMMARY: This work provides evidence that the total membrane potential measured with 18F-TPP+ PET is sensitive to temporal changes in mitochondrial membrane potential.

15.
Acta Neuropathol Commun ; 7(1): 164, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661038

RESUMEN

INTRODUCTION: Chronic traumatic encephalopathy (CTE) is a tauopathy associated to repetitive head trauma. There are no validated in vivo biomarkers of CTE and a definite diagnosis can only be made at autopsy. Recent studies have shown that positron emission tomography (PET) tracer AV-1451 (Flortaucipir) exhibits high binding affinity for paired helical filament (PHF)-tau aggregates in Alzheimer (AD) brains but relatively low affinity for tau lesions in other tauopathies like temporal lobal degeneration (FTLD)-tau, progressive supranuclear palsy (PSP) or corticobasal degeneration (CBD). Little is known, however, about the binding profile of this ligand to the tau-containing lesions of CTE. OBJECTIVE: To study the binding properties of [18F]-AV-1451 on pathologically confirmed CTE postmortem brain tissue samples. METHODS: We performed [18F]-AV-1451 phosphor screen and high resolution autoradiography, quantitative tau measurements by immunohistochemistry and Western blot and tau seeding activity assays in brain blocks containing hippocampus, superior temporal cortex, superior frontal cortex, inferior parietal cortex and occipital cortex from 5 cases of CTE, across the stages of disease: stage II-III (n = 1), stage III (n = 3), and stage IV (n = 1). Importantly, low or no concomitant classic AD pathology was present in these brains. RESULTS: Despite the presence of abundant tau aggregates in multiple regions in all CTE brains, only faint or no [18F]-AV-1451 binding signal could be detected by autoradiography. The only exception was the presence of a strong signal confined to the region of the choroid plexus and the meninges in two of the five cases. Tau immunostaining and Thioflavin-S staining ruled out the presence of tau aggregates in those regions. High resolution nuclear emulsion autoradiography revealed the presence of leptomeningeal melanocytes as the histologic source of this off-target binding. Levels of abnormally hyperphosphorylated tau species, as detected by Western Blotting, and tau seeding activity were both found to be lower in extracts from cases CTE when compared to AD. CONCLUSION: AV-1451 may have limited utility for in vivo selective and reliable detection of tau aggregates in CTE. The existence of disease-specific tau conformations may likely explain the differential binding affinity of this tracer for tau lesions in different tauopathies.


Asunto(s)
Encéfalo/metabolismo , Encefalopatía Traumática Crónica/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Carbolinas , Encefalopatía Traumática Crónica/complicaciones , Encefalopatía Traumática Crónica/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Tauopatías/complicaciones , Tauopatías/patología , Proteínas tau/análisis
16.
Med Phys ; 46(11): 4898-4906, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31508827

RESUMEN

PURPOSE: Patient body motion during a cardiac positron emission tomography (PET) scan can severely degrade image quality. We propose and evaluate a novel method to detect, estimate, and correct body motion in cardiac PET. METHODS: Our method consists of three key components: motion detection, motion estimation, and motion-compensated image reconstruction. For motion detection, we first divide PET list-mode data into 1-s bins and compute the center of mass (COM) of the coincidences' distribution in each bin. We then compute the covariance matrix within a 25-s sliding window over the COM signals inside the window. The sum of the eigenvalues of the covariance matrix is used to separate the list-mode data into "static" (i.e., body motion free) and "moving" (i.e. contaminated by body motion) frames. Each moving frame is further divided into a number of evenly spaced sub-frames (referred to as "sub-moving" frames), in which motion is assumed to be negligible. For motion estimation, we first reconstruct the data in each static and sub-moving frame using a rapid back-projection technique. We then select the longest static frame as the reference frame and estimate elastic motion transformations to the reference frame from all other static and sub-moving frames using nonrigid registration. For motion-compensated image reconstruction, we reconstruct all the list-mode data into a single image volume in the reference frame by incorporating the estimated motion transformations in the PET system matrix. We evaluated the performance of our approach in both phantom and human studies. RESULTS: Visually, the motion-corrected (MC) PET images obtained using the proposed method have better quality and fewer motion artifacts than the images reconstructed without motion correction (NMC). Quantitative analysis indicates that MC yields higher myocardium to blood pool concentration ratios. MC also yields sharper myocardium than NMC. CONCLUSIONS: The proposed body motion correction method improves image quality of cardiac PET.


Asunto(s)
Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Artefactos , Fluorodesoxiglucosa F18 , Humanos
17.
Methods Mol Biol ; 2029: 15-23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31273730

RESUMEN

Extracellular vesicles (EVs) have received immense attention in the past decade for their diverse use in diagnosis and therapeutics. Enhancing our understanding of EVs and increasing the reliability and reproducibility of EV research demands the use of standard isolation procedures and multiple characterization methods. Here we describe the most commonly used EV isolation method involving ultracentrifugation, and various characterization methods that include nanoparticle tracking analysis, atomic force microscopy and electron microscopy, which measure the size, concentration, and morphology of EVs.


Asunto(s)
Vesículas Extracelulares/fisiología , Células Madre Mesenquimatosas/citología , Microscopía de Fuerza Atómica/métodos , Nanopartículas/química , Reproducibilidad de los Resultados , Ultracentrifugación/métodos
18.
Proteomics ; 19(17): e1800166, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31318160

RESUMEN

Many acute and chronic lung injuries are incurable and rank as the fourth leading cause of death globally. While stem cell treatment for lung injuries is a promising approach, there is growing evidence that the therapeutic efficacy of stem cells originates from secreted extracellular vesicles (EVs). Consequently, EVs are emerging as next-generation therapeutics. While EVs are extensively researched for diagnostic applications, their therapeutic potential to promote tissue repair is not fully elucidated. By housing and delivering tissue-repairing cargo, EVs refine the cellular microenvironment, modulate inflammation, and ultimately repair injury. Here, the potential use of EVs derived from two placental mesenchymal stem/stromal cell (MSC) lines is presented; a chorionic MSC line (CMSC29) and a decidual MSC cell line (DMSC23) for applications in lung diseases. Functional analyses using in vitro models of injury demonstrate that these EVs have a role in ameliorating injuries caused to lung cells. It is also shown that EVs promote repair of lung epithelial cells. This study is fundamental to advancing the field of EVs and to unlock the full potential of EVs in regenerative medicine.


Asunto(s)
Vesículas Extracelulares/trasplante , Inflamación/terapia , Enfermedades Pulmonares/terapia , Células Madre Mesenquimatosas/citología , Placenta/citología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Embarazo
19.
Phys Med ; 58: 32-39, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30824147

RESUMEN

PURPOSE: We propose a multi-atlas based segmentation method for cardiac PET and SPECT images to deal with the high variability of tracer uptake characteristics in myocardium. In addition, we verify its performance by comparing it to the manual segmentation and single-atlas based approach, using dynamic myocardial PET. METHODS: Twelve left coronary artery ligated SD rats underwent ([18F]fluoropentyl) triphenylphosphonium salt PET/CT scans. Atlas-based segmentation is based on the spatial normalized template with pre-defined region-of-interest (ROI) for each anatomical or functional structure. To generate multiple left ventricular (LV) atlases, each LV image was segmented manually and divided into angular segments. The segmentation methods performances were compared in regional count information using leave-one-out cross-validation. Additionally, the polar-maps of kinetic parameters were estimated. RESULTS: In all images, the highest r2 template yielded the lowest root-mean-square error (RMSE) between the source image and the best-matching templates ranged between 0.91-0.97 and 0.06-0.11, respectively. The single-atlas and multi-atlas based ROIs yielded remarkably different perfusion distributions: only the multi-atlas based segmentation showed equivalent high correlation results (r2 = 0.92) with the manual segmentation compared with the single-atlas based (r2 = 0.88). The high perfusion value underestimation was remarkable in single-atlas based segmentation. CONCLUSIONS: The main advantage of the proposed multi-atlas based cardiac segmentation method is that it does not require any prior information on the tracer distribution to be incorporated into the image segmentation algorithms. Therefore, the same procedure suggested here is applicable to any other cardiac PET or SPECT imaging agents without modification.


Asunto(s)
Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Compuestos Organofosforados , Ratas , Ratas Sprague-Dawley
20.
Nat Protoc ; 14(2): 576-593, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30651586

RESUMEN

Extracellular vesicles (EVs) are highly specialized nanoscale assemblies that deliver complex biological cargos to mediate intercellular communication. EVs are heterogeneous, and characterization of this heterogeneity is paramount to understanding EV biogenesis and activity, as well as to associating them with biological responses and pathologies. Traditional approaches to studying EV composition generally lack the resolution and/or sensitivity to characterize individual EVs, and therefore the assessment of EV heterogeneity has remained challenging. We have recently developed an atomic force microscope IR spectroscopy (AFM-IR) approach to probe the structural composition of single EVs with nanoscale resolution. Here, we provide a step-by-step procedure for our approach and show its power to reveal heterogeneity across individual EVs, within the same population of EVs and between different EV populations. Our approach is label free and able to detect lipids, proteins and nucleic acids within individual EVs. After isolation of EVs from cell culture medium, the protocol involves incubation of the EV sample on a suitable substrate, setup of the AFM-IR instrument and collection of nano-IR spectra and nano-IR images. Data acquisition and analyses can be completed within 24 h, and require only a basic knowledge of spectroscopy and chemistry. We anticipate that new understanding of EV composition and structure through AFM-IR will contribute to our biological understanding of EV biology and could find application in disease diagnosis and the development of EV therapies.


Asunto(s)
Vesículas Extracelulares/ultraestructura , Células Madre Mesenquimatosas/metabolismo , Microscopía de Fuerza Atómica/métodos , Espectrofotometría Infrarroja/métodos , Comunicación Celular , Línea Celular , Corion/citología , Corion/metabolismo , Decidua/citología , Decidua/metabolismo , Vesículas Extracelulares/química , Femenino , Humanos , Lípidos/aislamiento & purificación , Células Madre Mesenquimatosas/citología , Ácidos Nucleicos/aislamiento & purificación , Especificidad de Órganos , Embarazo , Proteínas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...