Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 272: 116454, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704937

RESUMEN

Increasing antibiotic resistance of bacterial pathogens poses a serious threat to human health worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is among the most deleterious bacterial pathogens owing to its multidrug resistance, necessitating the development of new antibacterial agents against it. We previously identified a novel dioxonaphthoimidazolium agent, c5, with moderate antibacterial activity against MRSA from an anticancer clinical candidate, YM155. In this study, we aimed to design and synthesize several novel cationic amphiphilic N1,N3-dialkyldioxonaphthoimidazolium bromides with enhanced lipophilicity of the two side chains in the imidazolium scaffold and improved antibacterial activities compared to those of c5 against gram-positive bacteria in vitro and in vivo. Our new antibacterial lead, N1,N3-n-octylbenzyldioxonaphthoimidazolium bromide (11), exhibited highly potent antibacterial activities against various gram-positive bacterial strains (MICs: 0.19-0.39 µg/mL), including MRSA, methicillin-sensitive S. aureus, and Bacillus subtilis. Moreover, antibacterial mechanism of 11 against MRSA based on the generation of reactive oxygen species (ROS) was evaluated. Although compound 11 exhibited cytotoxic effects in vitro and lacked a therapeutic index against the HEK293 and HDFa mammalian cell lines, it exhibited low toxicity in the Drosophila animal model. Remarkably, 11 exhibited better in vivo antibacterial efficacy than c5 and the clinically used antibiotic, vancomycin, in SA3-infected Drosophila model. Moreover, the development of bacterial resistance to 11 was not observed after 16 consecutive passages. Therefore, rational design of antibacterial cationic amphiphiles based on ROS-generating pharmacophores with optimized lipophilicity can facilitate the identification of potent antibacterial agents against drug-resistant infections.

2.
Ann Lab Med ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529546

RESUMEN

Background: Metformin, a drug prescribed for patients with type 2 diabetes, has potential efficacy in enhancing antitumor immunity; however, the detailed underlying mechanisms remain to be elucidated. Therefore, we aimed to identify the inhibitory molecular mechanisms of metformin on programmed death ligand 1 (PD-L1) expression in cancer cells and programmed death 1 (PD-1) expression in immune cells. Methods: We employed a luciferase reporter assay, quantitative real-time PCR, immunoblotting analysis, immunoprecipitation and ubiquitylation assays, and a natural killer (NK) cell-mediated tumor cell cytotoxicity assay. A mouse xenograft tumor model was used to evaluate the effect of metformin on tumor growth, followed by flow-cytometric analysis using tumor-derived single-cell suspensions. Results: Metformin decreased AKT-mediated ß-catenin S552 phosphorylation and subsequent ß-catenin transactivation in an adenosine monophosphate-activated protein kinase (AMPK) activation-dependent manner, resulting in reduced CD274 (encoding PD-L1) transcription in cancer cells. Tumor-derived soluble factors enhanced PD-1 protein stability in NK and T cells via dissociation of PD-1 from ubiquitin E3 ligases and reducing PD-1 polyubiquitylation. Metformin inhibited the tumor-derived soluble factor-reduced binding of PD-1 to E3 ligases and PD-1 polyubiquitylation, resulting in PD-1 protein downregulation in an AMPK activation-dependent manner. These inhibitory effects of metformin on both PD-L1 and PD-1 expression ameliorated cancer-reduced cytotoxic activity of immune cells in vitro and decreased tumor immune evasion and growth in vivo. Conclusions: Metformin blocks both PD-L1 and PD-1 within the tumor microenvironment. This study provided a mechanistic insight into the efficacy of metformin in improving immunotherapy in human cancer.

3.
J Hazard Mater ; 464: 132966, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976851

RESUMEN

Exposure to ambient ultrafine particulate matter (UPM) causes respiratory disorders; however, the underlying molecular mechanisms remain unclear. In this study, we synthesized simulated UPM (sUPM) with controlled physicochemical properties using the spark-discharge method. Subsequently, we investigated the biological effects of sUPM using BEAS-2B human bronchial epithelial cells (HBECs) and a mouse intratracheal instillation model. High throughput RNA-sequencing and bioinformatics analyses revealed that dysregulation of the glycolytic metabolism is involved in the inhibited proliferation and survival of HBECs by sUPM treatment. Furthermore, signaling pathway and enzymatic analyses showed that the treatment of BEAS-2B cells with sUPM induces the inactivation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, also known as AKT), resulting in the downregulation of phosphofructokinase 2 (PFK2) S483 phosphorylation, PFK enzyme activity, and aerobic glycolysis in HBECs in an oxidative stress-independent manner. Additionally, intratracheal instillation of sUPM reduced the phosphorylation of ERK, AKT, and PFK2, decreased proliferation, and increased the apoptosis of bronchial epithelial cells in mice. The findings of this study imply that UPM induces pulmonary toxicity by disrupting aerobic glycolytic metabolism in lung epithelial cells, which can provide novel insights into the toxicity mechanisms of UPM and strategies to prevent their toxic effects.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Humanos , Animales , Ratones , Material Particulado/análisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , Células Epiteliales , Glucólisis , Fosfofructoquinasas/análisis , Fosfofructoquinasas/metabolismo , Contaminantes Atmosféricos/análisis
4.
J Exp Clin Cancer Res ; 42(1): 340, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38098117

RESUMEN

BACKGROUND: Cancer cells undergo cellular adaptation through metabolic reprogramming to sustain survival and rapid growth under various stress conditions. However, how brain tumors modulate their metabolic flexibility in the naturally serine/glycine (S/G)-deficient brain microenvironment remain unknown. METHODS: We used a range of primary/stem-like and established glioblastoma (GBM) cell models in vitro and in vivo. To identify the regulatory mechanisms of S/G deprivation-induced metabolic flexibility, we employed high-throughput RNA-sequencing, transcriptomic analysis, metabolic flux analysis, metabolites analysis, chromatin immunoprecipitation (ChIP), luciferase reporter, nuclear fractionation, cycloheximide-chase, and glucose consumption. The clinical significances were analyzed in the genomic database (GSE4290) and in human GBM specimens. RESULTS: The high-throughput RNA-sequencing and transcriptomic analysis demonstrate that the de novo serine synthesis pathway (SSP) and glycolysis are highly activated in GBM cells under S/G deprivation conditions. Mechanistically, S/G deprivation rapidly induces reactive oxygen species (ROS)-mediated AMP-activated protein kinase (AMPK) activation and AMPK-dependent hypoxia-inducible factor (HIF)-1α stabilization and transactivation. Activated HIF-1α in turn promotes the expression of SSP enzymes phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH). In addition, the HIF-1α-induced expression of glycolytic genes (GLUT1, GLUT3, HK2, and PFKFB2) promotes glucose uptake, glycolysis, and glycolytic flux to fuel SSP, leading to elevated de novo serine and glycine biosynthesis, NADPH/NADP+ ratio, and the proliferation and survival of GBM cells. Analyses of human GBM specimens reveal that the levels of overexpressed PHGDH, PSAT1, and PSPH are positively correlated with levels of AMPK T172 phosphorylation and HIF-1α expression and the poor prognosis of GBM patients. CONCLUSION: Our findings reveal that metabolic stress-enhanced glucose-derived de novo serine biosynthesis is a critical metabolic feature of GBM cells, and highlight the potential to target SSP for treating human GBM.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glioblastoma , Humanos , Glioblastoma/patología , Serina , Glucosa/metabolismo , Glicina , ARN , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Línea Celular Tumoral , Microambiente Tumoral , Fosfofructoquinasa-2
5.
Mar Drugs ; 21(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37233475

RESUMEN

This study aimed to elucidate the structural congeners of natural izenamides A, B, and C (1-3) responsible for cathepsin D (CTSD) inhibition. Structurally modified izenamides were synthesized and biologically evaluated, and their biologically important core structures were identified. We confirmed that the natural statine (Sta) unit (3S,4S)-γ-amino-ß-hydroxy acid is a requisite core structure of izenamides for inhibition of CTSD, which is closely related to the pathophysiological roles in numerous human diseases. Interestingly, the statine-incorporated izenamide C variant (7) and 18-epi-izenamide B variant (8) exhibited more potent CTSD-inhibitory activities than natural izenamides.


Asunto(s)
Catepsina D , Inhibidores de Proteasas , Humanos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
6.
Genes Genomics ; 45(7): 901-909, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37231294

RESUMEN

BACKGROUND: In this study, we observed that in human colon carcinoma HCT116 cells mRNA level of the human ß-galactoside α2,6-sialyltransferase (hST6Gal I) was decreased by curcumin. FACS analysis using the α2,6-sialyl-specific lectin (SNA) also showed a noticeable decrease in binding to SNA by curcumin. OBJECTIVE: To investigate the mechanism for curcumin-triggered downregulation of hST6Gal I transcription. METHODS: The mRNA levels of nine kinds of hST genes were assessed by RT-PCR after curcumin was treated in HCT116 cells. The level of hST6Gal I product on cell surface was examined by flow cytometry analysis. Luciferase reporter plasmids with 5'-deleted constructs and mutants of the hST6Gal I promoter were transiently transfected into HCT116 cells, and the luciferase activity was measured after treatment with curcumin. RESULTS: Curcumin led to significant transcriptional repression of the hST6Gal I promoter. Promoter analysis using deletion mutants proved that the - 303 to - 189 region of the hST6Gal I promoter is required for transcriptional repression in response to curcumin. Among putative binding sites for transcription factors IK2, GATA1, TCF12, TAL1/E2A, SPT, and SL1 in this region, by site-directed mutagenesis analysis the TAL/E2A binding site (nucleotides - 266/- 246) was proved to be crucial for curcumin-triggered downregulation of hST6Gal I transcription in HCT116 cells. The transcription activity of hST6Gal I gene in HCT116 cells was markedly suppressed by compound C, an AMP-activated protein kinase (AMPK) inhibitor. CONCLUSION: These indicate that gene expression of hST6Gal I in HCT116 cells is controlled through AMPK/TAL/E2A signal pathway.


Asunto(s)
Carcinoma , Neoplasias del Colon , Curcumina , Humanos , Curcumina/farmacología , Proteínas Quinasas Activadas por AMP , beta-D-Galactósido alfa 2-6-Sialiltransferasa , Células HCT116 , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , ARN Mensajero/genética , Luciferasas
7.
Front Chem ; 11: 1140562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007059

RESUMEN

Quinazolines are a class of nitrogen-containing heterocyclic compounds with broad-spectrum of pharmacological activities. Transition-metal-catalyzed reactions have emerged as reliable and indispensable tools for the synthesis of pharmaceuticals. These reactions provide new entries into pharmaceutical ingredients of continuously increasing complexity, and catalysis with these metals has streamlined the synthesis of several marketed drugs. The last few decades have witnessed a tremendous outburst of transition-metal-catalyzed reactions for the construction of quinazoline scaffolds. In this review, the progress achieved in the synthesis of quinazolines under transition metal-catalyzed conditions are summarized and reports from 2010 to date are covered. This is presented along with the mechanistic insights of each representative methodology. The advantages, limitations, and future perspectives of synthesis of quinazolines through such reactions are also discussed.

8.
Molecules ; 27(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36235197

RESUMEN

This paper reports a concise and scalable method for the synthesis of the phytoestrogen 7,2'-dihydroxy-4',5'-dimethoxyisoflavanone 1 via an optimized synthetic route. Compound 1 was readily obtained in 11 steps and 11% overall yield on a gram scale from commercially available 3,4-dimethoxyphenol. The key features of the synthesis include the construction of the deoxybenzoin unit through a sequence of Claisen rearrangement, oxidative cleavage, and aryllithium addition and the efficient synthesis of the isoflavanone architecture from highly functionalized 2-hydroxyketone.


Asunto(s)
Fitoestrógenos , Fitoestrógenos/farmacología , Estereoisomerismo
9.
Neurotherapeutics ; 19(4): 1298-1312, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35614294

RESUMEN

Adult neurogenesis, a process controlling the proliferation to maturation of newly generated neurons in the post-developmental brain, is associated with various brain functions and pathogenesis of neuropsychological diseases, such as Parkinson's disease (PD) and depression. Because orphan nuclear receptor estrogen-related receptor γ (ERRγ) plays a role in the differentiation of neuronal cells, we investigated whether an ERRγ ligand enhances adult neurogenesis and regulates depressive behavior in a LRRK2-G2019S-associated mouse model of PD. Young female LRRK2-G2019S mice (7-9 weeks old) showed depression-like behavior without dopaminergic neuronal loss in the nigrostriatal pathway nor motor dysfunction. A significant decrease in adult hippocampal neurogenesis was detected in young female LRRK2-G2019S mice, but not in comparable male mice. A synthetic ERRγ ligand, (E)-4-hydroxy-N'-(4-(phenylethynyl)benzylidene)benzohydrazide (HPB2), ameliorated depression-like behavior in young female LRRK2-G2019S mice and enhanced neurogenesis in the hippocampus, as evidenced by increases in the number of bromodeoxyuridine/neuronal nuclei-positive cells and in the intensity and number of doublecortin-positive cells in the hippocampal dentate gyrus (DG). Moreover, HPB2 significantly increased the number of spines and the number and length of dendrites in the DG of young female LRRK2-G2019S mice. Furthermore, HPB2 upregulated brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling, one of the important factors regulating neurogenesis, as well as phosphorylated cAMP-response element binding protein-positive cells in the DG of young female LRRK2-G2019S mice. Together, these results suggest ERRγ as a novel therapeutic target for PD-associated depression by modulating adult neurogenesis and BDNF/TrkB signaling.


Asunto(s)
Enfermedad de Parkinson , Ratones , Masculino , Femenino , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Ratones Transgénicos , Bromodesoxiuridina , Depresión/genética , Ligandos , Receptores Nucleares Huérfanos , Tropomiosina , Proteínas Serina-Treonina Quinasas , Neurogénesis , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Estrógenos , Mutación
10.
Bioorg Chem ; 122: 105716, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35303621

RESUMEN

The discovery of small molecules that regulate specific neuronal phenotypes is important for the development of new therapeutic candidates for neurological diseases. Estrogen-related receptor γ (ERRγ), an orphan nuclear receptor widely expressed in the central nervous system (CNS), is closely related to the regulation of neuronal metabolism and differentiation. We previously reported that upregulation of ERRγ could enhance dopaminergic neuronal phenotypes in the neuroblastoma cell line, SH-SY5Y. In this study, we designed and synthesized a series of new ERRγ agonists using the X-ray crystal structure of the GSK4716-bound ERRγ complex and known synthetic ligands. Our new ERRγ agonists exhibited increased transcriptional activities of ERRγ. In addition, our molecular docking results supported the experimental findings for ERRγ agonistic activity of the potent analogue, 5d. Importantly, 5d not only enhanced the expression of dopaminergic neuronal-specific molecules, TH and DAT but also activated the relevant signaling events, such as the CREB-mediated signaling pathway. The results of the present study may provide useful clues for the development of novel ERRγ agonists for neurological diseases related to the dopaminergic nervous system.


Asunto(s)
Neuronas Dopaminérgicas , Receptores de Estrógenos , Neuronas Dopaminérgicas/metabolismo , Simulación del Acoplamiento Molecular , Fenotipo , Receptores de Estrógenos/metabolismo , Regulación hacia Arriba
11.
Virulence ; 13(1): 149-159, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34983312

RESUMEN

Artemisinin (ARS) and its semi-synthetic derivatives are effective drugs to treat malaria and possess multiple therapeutic activities based on their endoperoxide bridge. Here, we showed that ARS displayed antibacterial efficacy in Drosophila systemic infections caused by bacterial pathogens but killed only Vibrio cholerae (VC) in vitro, involving reactive oxygen species (ROS) generation and/or DNA damage. This selective antibacterial activity of ARS was attributed to the higher intracellular copper levels in VC, in that the antibacterial activity was observed in vitro upon addition of cuprous ions even against other bacteria and was compromised by the copper-specific chelators neocuproine (NC) and triethylenetetramine (TETA) in vitro and in vivo. We suggest that copper can enhance or reinforce the therapeutic activities of ARS to be repurposed as an antibacterial drug for the treatment of bacterial infections.


Asunto(s)
Artemisininas , Cobre , Antibacterianos/farmacología , Artemisininas/farmacología , Cobre/farmacología , Daño del ADN
12.
Nutrients ; 15(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36615756

RESUMEN

Fibrosis has various biological processes and affects almost every organ, especially in patients with inflammatory bowel disease, including Crohn's disease, who experience discomfort caused by intestinal fibrosis, which is a problem that needs to be resolved. TGF-ß signaling is known to act as a key regulator of intestinal fibrosis, and its modulation could be an excellent candidate for fibrosis therapy. Xanthohumol (XN) has various effects, including anti-inflammation and anti-cancer; however, the detailed mechanism of TGF-ß signaling has not yet been studied. The purpose of this study was to investigate the mechanism underlying the anti-fibrotic effect of XN on TGF-ß1-induced intestinal fibrosis using primary human intestinal fibroblasts (HIFs). In this study, to check the anti-fibrotic effects of XN on intestinal fibrosis, we assessed the expression of fibrosis-related genes in TGF-ß1-stimulated HIFs by qPCR, immunoblotting, and immunofluorescence staining. As a result, XN showed the ability to reduce the expression of fibrosis-associated genes increased by TGF-ß1 treatment in HIFs and restored the cell shape altered by TGF-ß1. In particular, XN repressed both NF-κB- and Smad-binding regions in the α-SMA promoter, which is important in fibrosis. In addition, XN inhibited NF-κB signaling, including phosphorylated-IkBα and cyclooxygenase-2 expression, and TNF-α-stimulated transcriptional activity of NF-κB. XN attenuated TGF-ß1-induced phosphorylation of Smad2 and Smad3, and the transcriptional activity of CAGA. Particularly, XN interfered with the binding of TGF-Receptor I (TßRI) and Smad3 by binding to the kinase domain of the L45 loop of TßRI, thereby confirming that the fibrosis mechanism did not proceed further. In conclusion, XN has an inhibitory effect on TGF-ß1-induced intestinal fibrosis in HIFs, significantly affecting TGF-ß/Smad signaling.


Asunto(s)
FN-kappa B , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , FN-kappa B/metabolismo , Fibrosis , Transducción de Señal
13.
Bioorg Chem ; 116: 105398, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34628222

RESUMEN

The first total syntheses of isocorniculatolide B, corniculatolide B, and corniculatolide C, consisting of isomeric corniculatolide skeletons, have been accomplished in a divergent manner. The key features of the synthesis involve the construction of diaryl ether linkages by nucleophilic aromatic substitution, installation of a C14-substituted alkyl side chain via a sequence of Baeyer-Villiger reaction and Claisen rearrangement, and efficient construction of corniculatolide and isocorniculatolide frameworks, including 17-membered (exterior) macrolactone skeletons from a versatile diaryl ether intermediate by Mitsunobu macrolactonization. Moreover, we prepared the structural congeners of isomeric corniculatolides via diverted total synthesis approach including desmethyl analogues and related dimeric macrolides. The anti-inflammatory activities of the synthesized natural products, analogues and synthetic intermediates were also investigated. In particular, corniculatolide B significantly inhibited the protein expression of COX-2 and the mRNA expressions of TNF-α, IL-1ß and IL-6 by inhibiting of NF-κB signaling in intestinal epithelial cells induced by lipopolysaccharide treatment. It also significantly inhibited the promoter activity and the phosphorylation of subunits p50 and p65 of NF-κB to the same extent as Bay 11-7082, a potent IκB kinase inhibitor. These results suggest that corniculatolide B might have therapeutic potential in inflammatory bowel disease via NF-κB signaling pathway.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Lactonas/farmacología , Macrólidos/farmacología , FN-kappa B/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Línea Celular , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Lactonas/síntesis química , Macrólidos/síntesis química , Estructura Molecular , FN-kappa B/metabolismo , Ratas , Relación Estructura-Actividad
14.
Pharmacol Res ; 165: 105423, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33434621

RESUMEN

Brain derived neurotrophic factor (BDNF) promotes maturation of dopaminergic (DAergic) neurons in the midbrain and positively regulates their maintenance and outgrowth. Therefore, understanding the mechanisms regulating the BDNF signaling pathway in DAergic neurons may help discover potential therapeutic strategies for neuropsychological disorders associated with dysregulation of DAergic neurotransmission. Because estrogen-related receptor gamma (ERRγ) is highly expressed in both the fetal nervous system and adult brains during DAergic neuronal differentiation, and it is involved in regulating the DAergic neuronal phenotype, we asked in this study whether ERRγ ligand regulates BDNF signaling and subsequent DAergic neuronal phenotype. Based on the X-ray crystal structures of the ligand binding domain of ERRγ, we designed and synthesized the ERRγ agonist, (E)-4-hydroxy-N'-(4-(phenylethynyl)benzylidene)benzohydrazide (HPB2) (Kd value, 8.35 µmol/L). HPB2 increased BDNF mRNA and protein levels, and enhanced the expression of the BDNF receptor tropomyosin receptor kinase B (TrkB) in human neuroblastoma SH-SY5Y, differentiated Lund human mesencephalic (LUHMES) cells, and primary ventral mesencephalic (VM) neurons. HPB2-induced upregulation of BDNF was attenuated by GSK5182, an antagonist of ERRγ, and siRNA-mediated ERRγ silencing. HPB2-induced activation of extracellular-signal-regulated kinase (ERK) and phosphorylation of cAMP-response element binding protein (CREB) was responsible for BDNF upregulation in SH-SY5Y cells. HPB2 enhanced the DAergic neuronal phenotype, namely upregulation of tyrosine hydroxylase (TH) and DA transporter (DAT) with neurite outgrowth, both in SH-SY5Y and primary VM neurons, which was interfered by the inhibition of BDNF-TrkB signaling, ERRγ knockdown, or blockade of ERK activation. HPB2 also upregulated BDNF and TH in the striatum and induced neurite elongation in the substantia nigra of mice brain. In conclusion, ERRγ activation regulated BDNF expression and the subsequent DAergic neuronal phenotype in neuronal cells. Our results might provide new insights into the mechanism underlying the regulation of BDNF expression, leading to novel therapeutic strategies for neuropsychological disorders associated with DAergic dysregulation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Neuronas Dopaminérgicas/metabolismo , Congéneres del Estradiol/farmacología , Glicoproteínas de Membrana/biosíntesis , Receptor trkB/biosíntesis , Receptores de Estrógenos/metabolismo , Regulación hacia Arriba/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/química , Línea Celular Tumoral , Neuronas Dopaminérgicas/efectos de los fármacos , Congéneres del Estradiol/química , Femenino , Humanos , Ligandos , Masculino , Glicoproteínas de Membrana/química , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Fenotipo , Embarazo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Receptor trkB/química , Receptores de Estrógenos/química , Regulación hacia Arriba/efectos de los fármacos
15.
Molecules ; 25(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172169

RESUMEN

Pyrimidine is a privileged scaffold in many synthetic compounds exhibiting diverse pharmacological activities, and is used for therapeutic applications in a broad spectrum of human diseases. In this study, we prepared a small set of pyrimidine libraries based on the structure of two hit compounds that were identified through the screening of an in-house library in order to identify an inhibitor of anoctamin 1 (ANO1). ANO1 is amplified in various types of human malignant tumors, such as head and neck, parathyroid, and gastrointestinal stromal tumors, as well as in breast, lung, and prostate cancers. After initial screening and further structure optimization, we identified Aa3 as a dose-dependent ANO1 blocker. This compound exhibited more potent anti-cancer activity in the NCI-H460 cell line, expressing high levels of ANO1 compared with that in A549 cells that express low levels of ANO1. Our results open a new direction for the development of small-molecule ANO1 blockers composed of a pyrimidine scaffold and a nitrogen-containing heterocyclic moiety, with drug-like properties.


Asunto(s)
Anoctamina-1/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Pirimidinas/química , Animales , Anoctamina-1/metabolismo , Antineoplásicos/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Proteínas de Neoplasias/metabolismo , Pirimidinas/farmacología , Ratas
16.
Front Chem ; 8: 628, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850648

RESUMEN

Arylnaphthalene lignan lactones belong to a class of natural lignans, and more than 60 analogs have been isolated. Their pharmacological activities as well as unique structural features have attracted considerable attention from medicinal and synthetic chemists. Since the first synthesis in 1895, many synthetic methodologies with ionic or pericyclic reaction mechanisms have been reported. Transition metal catalysts sometimes provide exceptional synthetic versatility for the syntheses of natural compounds. Recently, transition metal-mediated methodologies were investigated for the construction of basic scaffolds of arylnaphthalene lignan lactones. Five kinds of transition metal catalysts containing gold, manganese, nickel, palladium, and silver have been explored. Most of the metal catalysts successfully created arylnaphthalene lactones by intermolecular or intramolecular annulative cyclization. In this review, all reports of transition metal-mediated annulative construction of arylnaphthalene lignan lactones were compiled, and synthetic approaches, mechanistic aspects, and successful applications were discussed.

17.
Molecules ; 25(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397326

RESUMEN

Despite numerous reports on the beneficial effects of catechin or epicatechin contained in tea and cacao extract on human health, a conclusive and precise molecular mechanism has not been elucidated. Metabolism of chemical compounds in gut microbiota recently gained significant attention, and extensive studies have been devoted in this field. In conjunction with these results, our group focused on the anti-inflammatory effects of both enantiomers of DHPV (5-(3',4'-dihydroxyphenyl)-γ-valerolactone), produced in the intestine by microbiota metabolism, on IEC-6 cells. Divergent and efficient enantioselective synthesis of (S)- and (R)-DHPV was efficiently achieved by cross-metathesis and Sharpless asymmetric dihydroxylation as a key reaction for four steps in 16% and 14% overall yields, respectively. The anti-inflammatory effects of two enantiomers were tested on IEC-6 cells, and we found that (S)-DHPV was more active than (R)-DHPV. This result implicates that the metabolite produced in the gut has beneficial effects on IEC-6 cells of rat intestines, and the chirality of the metabolite is important for its anti-inflammatory activity. This also provided information for the future discovery of novel small molecular therapeutics for the treatment of inflammatory bowel disease.


Asunto(s)
Antiinflamatorios , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mucosa Intestinal/metabolismo , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Línea Celular , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Lactonas/síntesis química , Lactonas/química , Lactonas/farmacología , Ratas
18.
Front Cell Dev Biol ; 8: 32, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117966

RESUMEN

Aminoacyl-tRNA synthetases (ARSs), which are essential for protein translation, were recently shown to have non-translational functions in various pathological conditions including cancer. However, the molecular mechanism underlying the role of ARSs in cancer remains unknown. Here, we demonstrate that asparaginyl-tRNA synthetase (NRS) regulates Yorkie-mediated tumorigenesis by binding to the Hippo pathway component Salvador. NRS-RNAi and the NRS inhibitor tirandamycin B (TirB) suppressed Yorkie-mediated tumor phenotypes in Drosophila. Genetic analysis showed that NRS interacted with Salvador, and NRS activated Hippo target genes by regulating Yorkie phosphorylation. Biochemical analyses showed that NRS blocked Salvador-Hippo binding by interacting directly with Salvador, and TirB treatment inhibited NRS-Salvador binding. YAP target genes were upregulated in a mammalian cancer cell line with high expression of NRS, whereas TirB treatment suppressed cancer cell proliferation. These results indicate that NRS regulates tumor growth by interacting with Salvador in the Hippo signaling pathway.

19.
Molecules ; 24(24)2019 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-31817984

RESUMEN

The unexpected rearrangement of N-allyl-2-phenyl-4,5-dihydrooxazole-4-carboxamides in the presence of LiHMDS has been found. The key features are: (1) the net reaction consisted of 1,3-migration of the N-allyl group, (2) the rearrangement produced a congested aza-quaternary carbon center, (3) both cyclic and acyclic substrates underwent the unexpected rearrangement to afford products in moderate to high yields, and (4) the reaction seemed to be highly stereoselective. In addition, a plausible mechanism has been discussed.


Asunto(s)
Compuestos Alílicos/química , Carbono/química , Estructura Molecular , Estereoisomerismo
20.
Biochem Biophys Res Commun ; 515(4): 725, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31239030

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors. The authors have indicated that Fig. 1D data originated from another source not specified in the article. They also indicated image duplication in Fig. 1A and B. The authors of this article would like to apologize to all affected parties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA