Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Eur J Med Chem ; 272: 116454, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704937

RESUMEN

Increasing antibiotic resistance of bacterial pathogens poses a serious threat to human health worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is among the most deleterious bacterial pathogens owing to its multidrug resistance, necessitating the development of new antibacterial agents against it. We previously identified a novel dioxonaphthoimidazolium agent, c5, with moderate antibacterial activity against MRSA from an anticancer clinical candidate, YM155. In this study, we aimed to design and synthesize several novel cationic amphiphilic N1,N3-dialkyldioxonaphthoimidazolium bromides with enhanced lipophilicity of the two side chains in the imidazolium scaffold and improved antibacterial activities compared to those of c5 against gram-positive bacteria in vitro and in vivo. Our new antibacterial lead, N1,N3-n-octylbenzyldioxonaphthoimidazolium bromide (11), exhibited highly potent antibacterial activities against various gram-positive bacterial strains (MICs: 0.19-0.39 µg/mL), including MRSA, methicillin-sensitive S. aureus, and Bacillus subtilis. Moreover, antibacterial mechanism of 11 against MRSA based on the generation of reactive oxygen species (ROS) was evaluated. Although compound 11 exhibited cytotoxic effects in vitro and lacked a therapeutic index against the HEK293 and HDFa mammalian cell lines, it exhibited low toxicity in the Drosophila animal model. Remarkably, 11 exhibited better in vivo antibacterial efficacy than c5 and the clinically used antibiotic, vancomycin, in SA3-infected Drosophila model. Moreover, the development of bacterial resistance to 11 was not observed after 16 consecutive passages. Therefore, rational design of antibacterial cationic amphiphiles based on ROS-generating pharmacophores with optimized lipophilicity can facilitate the identification of potent antibacterial agents against drug-resistant infections.

2.
Int J Biol Macromol ; 266(Pt 2): 131195, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565363

RESUMEN

We fabricated hybrid nanoparticles consisting of organic semiconducting material with peptide sequence to reflect the target protein interaction. A phosphorescent OLED material, platinum octaethylporphyrin (PtOEP) was self-assembled by reprecipitation with the A17 peptide (YCAYYSPRHKTTF) selected as a probe ligand in order to recognize heat shock protein 70 (HSP70). The phosphorescence intensity of the PtOEP-A17 assembly was enhanced by 125 % after treatment with HSP70. The specificity of the protein interaction was confirmed in both solution and solid states of the PtOEP-A17 assembly against to BSA and nucleolin. We figured out that the phosphorescence lifetime of PtOEP-A17 assembly after exposed to HSP70 increased significantly to 153 ns from initial 115 ns. These simultaneous enhancements in phosphorescence and lifetime triggered by the specific protein interaction would open new applications of PtOEP, a representative material of light-emitting device fields.


Asunto(s)
Péptidos , Péptidos/química , Unión Proteica , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/química , Mediciones Luminiscentes , Porfirinas/química , Platino (Metal)/química , Albúmina Sérica Bovina/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Nucleolina , Animales
3.
Ann Lab Med ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529546

RESUMEN

Background: Metformin, a drug prescribed for patients with type 2 diabetes, has potential efficacy in enhancing antitumor immunity; however, the detailed underlying mechanisms remain to be elucidated. Therefore, we aimed to identify the inhibitory molecular mechanisms of metformin on programmed death ligand 1 (PD-L1) expression in cancer cells and programmed death 1 (PD-1) expression in immune cells. Methods: We employed a luciferase reporter assay, quantitative real-time PCR, immunoblotting analysis, immunoprecipitation and ubiquitylation assays, and a natural killer (NK) cell-mediated tumor cell cytotoxicity assay. A mouse xenograft tumor model was used to evaluate the effect of metformin on tumor growth, followed by flow-cytometric analysis using tumor-derived single-cell suspensions. Results: Metformin decreased AKT-mediated ß-catenin S552 phosphorylation and subsequent ß-catenin transactivation in an adenosine monophosphate-activated protein kinase (AMPK) activation-dependent manner, resulting in reduced CD274 (encoding PD-L1) transcription in cancer cells. Tumor-derived soluble factors enhanced PD-1 protein stability in NK and T cells via dissociation of PD-1 from ubiquitin E3 ligases and reducing PD-1 polyubiquitylation. Metformin inhibited the tumor-derived soluble factor-reduced binding of PD-1 to E3 ligases and PD-1 polyubiquitylation, resulting in PD-1 protein downregulation in an AMPK activation-dependent manner. These inhibitory effects of metformin on both PD-L1 and PD-1 expression ameliorated cancer-reduced cytotoxic activity of immune cells in vitro and decreased tumor immune evasion and growth in vivo. Conclusions: Metformin blocks both PD-L1 and PD-1 within the tumor microenvironment. This study provided a mechanistic insight into the efficacy of metformin in improving immunotherapy in human cancer.

4.
J Hazard Mater ; 464: 132966, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976851

RESUMEN

Exposure to ambient ultrafine particulate matter (UPM) causes respiratory disorders; however, the underlying molecular mechanisms remain unclear. In this study, we synthesized simulated UPM (sUPM) with controlled physicochemical properties using the spark-discharge method. Subsequently, we investigated the biological effects of sUPM using BEAS-2B human bronchial epithelial cells (HBECs) and a mouse intratracheal instillation model. High throughput RNA-sequencing and bioinformatics analyses revealed that dysregulation of the glycolytic metabolism is involved in the inhibited proliferation and survival of HBECs by sUPM treatment. Furthermore, signaling pathway and enzymatic analyses showed that the treatment of BEAS-2B cells with sUPM induces the inactivation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, also known as AKT), resulting in the downregulation of phosphofructokinase 2 (PFK2) S483 phosphorylation, PFK enzyme activity, and aerobic glycolysis in HBECs in an oxidative stress-independent manner. Additionally, intratracheal instillation of sUPM reduced the phosphorylation of ERK, AKT, and PFK2, decreased proliferation, and increased the apoptosis of bronchial epithelial cells in mice. The findings of this study imply that UPM induces pulmonary toxicity by disrupting aerobic glycolytic metabolism in lung epithelial cells, which can provide novel insights into the toxicity mechanisms of UPM and strategies to prevent their toxic effects.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Humanos , Animales , Ratones , Material Particulado/análisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , Células Epiteliales , Glucólisis , Fosfofructoquinasas/análisis , Fosfofructoquinasas/metabolismo , Contaminantes Atmosféricos/análisis
5.
J Exp Clin Cancer Res ; 42(1): 340, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38098117

RESUMEN

BACKGROUND: Cancer cells undergo cellular adaptation through metabolic reprogramming to sustain survival and rapid growth under various stress conditions. However, how brain tumors modulate their metabolic flexibility in the naturally serine/glycine (S/G)-deficient brain microenvironment remain unknown. METHODS: We used a range of primary/stem-like and established glioblastoma (GBM) cell models in vitro and in vivo. To identify the regulatory mechanisms of S/G deprivation-induced metabolic flexibility, we employed high-throughput RNA-sequencing, transcriptomic analysis, metabolic flux analysis, metabolites analysis, chromatin immunoprecipitation (ChIP), luciferase reporter, nuclear fractionation, cycloheximide-chase, and glucose consumption. The clinical significances were analyzed in the genomic database (GSE4290) and in human GBM specimens. RESULTS: The high-throughput RNA-sequencing and transcriptomic analysis demonstrate that the de novo serine synthesis pathway (SSP) and glycolysis are highly activated in GBM cells under S/G deprivation conditions. Mechanistically, S/G deprivation rapidly induces reactive oxygen species (ROS)-mediated AMP-activated protein kinase (AMPK) activation and AMPK-dependent hypoxia-inducible factor (HIF)-1α stabilization and transactivation. Activated HIF-1α in turn promotes the expression of SSP enzymes phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH). In addition, the HIF-1α-induced expression of glycolytic genes (GLUT1, GLUT3, HK2, and PFKFB2) promotes glucose uptake, glycolysis, and glycolytic flux to fuel SSP, leading to elevated de novo serine and glycine biosynthesis, NADPH/NADP+ ratio, and the proliferation and survival of GBM cells. Analyses of human GBM specimens reveal that the levels of overexpressed PHGDH, PSAT1, and PSPH are positively correlated with levels of AMPK T172 phosphorylation and HIF-1α expression and the poor prognosis of GBM patients. CONCLUSION: Our findings reveal that metabolic stress-enhanced glucose-derived de novo serine biosynthesis is a critical metabolic feature of GBM cells, and highlight the potential to target SSP for treating human GBM.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glioblastoma , Humanos , Glioblastoma/patología , Serina , Glucosa/metabolismo , Glicina , ARN , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Línea Celular Tumoral , Microambiente Tumoral , Fosfofructoquinasa-2
6.
Eur J Med Res ; 28(1): 514, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968735

RESUMEN

Hepatocellular carcinoma (HCC) is the most common form of liver cancer and the 5-year relative overall survival (OS) rate is less than 20%. Since there are no specific symptoms, most patients with HCC are diagnosed in an advanced stage with poor prognosis. Therefore, identifying novel prognostic biomarkers to improve the survival of patients with HCC is urgently needed. In the present study, we attempted to identify SAMD13 (Sterile Alpha Motif Domain-Containing Protein 13) as a novel biomarker associated with the prognosis of HCC using various bioinformatics tools. SAMD13 was found to be highly expressed pan-cancer; however, the SAMD13 expression was significantly correlated with the worst prognosis in HCC. Clinicopathological analysis revealed that SAMD13 upregulation was significantly associated with advanced HCC stage and high-grade tumor type. Simultaneously, high SAMD13 expression resulted in association with various immune markers in the immune cell subsets by TIMER databases and efficacy of immunotherapy. Methylation analysis showed SAMD13 was remarkably associated with prognosis. Furthermore, a six-hub gene signature associated with poor prognosis was correlated with the cell cycle, transcription, and epigenetic regulation and this analysis may support the connection between SAMD13 expression and drug-resistance. Our study illustrated the characteristics of SAMD13 role in patients with HCC using various bioinformatics tools and highlights its potential role as a therapeutic target and promising biomarker for prognosis in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Pronóstico , Epigénesis Genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
7.
Psychol Trauma ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982785

RESUMEN

OBJECTIVE: To examine the prevalence of embitterment by following individuals over time and to statistically evaluate how factors known as correlates of embitterment affect different groups with or without changes in embitterment over time. METHOD: Responses for the posttraumatic embitterment disorder (PTED) self-rating Scale were collected from the same 1,153 adults who participated in a follow-up survey delivered 14 months apart. Suggested cutoff points were applied to identify changes in embitterment and four groups were identified. For each group, the relative impacts of factors that affect changes in or maintenance of embitterment, such as negative life events (NLEs), belief in a just world (BJW), social support, relative deprivation, and resilience, were statistically analyzed. RESULTS: The average PTED scores were relatively high for both surveys (M = 1.73 and 1.58, respectively). "Persistent" or "increased" in embitterment was seen for 47.3% of the participants. In particular, 15.3% (Wave 1) and 12.1% (Wave 2) of participants experienced clinically relevant levels of embitterment. NLEs, BJW, relative deprivation, and resilience showed significant associations with the risk of persistence or deterioration of embitterment. CONCLUSIONS: Our study highlights embitterment as a dynamic emotion that can either be aggravated or moderated over time. Embitterment can be elicited by joint effects of multiple social and interactional factors including known embitterment correlates, and relative deprivation is confirmed as a possible core elicitor of embitterment in the context of comparative justice. These findings imply that additional longitudinal research and development of practices for mental health prevention in general populations are needed. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

8.
Poult Sci ; 102(8): 102802, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37307631

RESUMEN

To date, many transgenic (TG) chicken lines have been developed, but few studies have performed a comparative analysis of their mortality, growth, and egg productivity. Previously, we reported the production of 3D8 scFv TG chickens showing antiviral activity. Here, we performed a biometric characterization of TG offspring female chickens. We selected 40 TG and 40 non-TG offspring female chicks among newly hatched chicks produced via artificial insemination of semen from heterotypic 3D8 scFv males into wild-type female chickens. Serum was collected at 14 wk of age, and serum concentrations of biochemical parameters, cytokines, and sex hormones were analyzed. Mortality and growth were monitored daily from 1 to 34 wk, egg productivity was monitored daily from 20 to 34 wk, and the weekly average values were used for analyses. Some serum parameters and cytokines were significantly different between non-TG and TG offspring female chickens. The levels of phosphorus (PHOS), total protein (TP), albumin (ALB), globulin (GLOB), and alanine aminotransferase (ALT) were significantly higher in non-TG chickens (P < 0.05). The levels of alkaline phosphatase (ALP) and gamma-glutamyltransferase (GGT) were significantly higher in TG chickens (P < 0.05). The levels of insulin growth factor-1 (IGF-1), interferon-gamma (INF-γ), interleukin-4 (IL-4), and IL-8 were significantly lower in TG chickens (P < 0.05). Despite these differences, the mortality rates, body weight, egg production rates, and egg weight were not significantly different in the experimental groups of non-TG and TG offspring female chickens (P > 0.05). In conclusion, ubiquitous expression of the 3D8 scFv gene in TG offspring female chickens does not affect some biometric characteristics, including mortality, growth, and egg productivity.


Asunto(s)
Pollos , Anticuerpos de Cadena Única , Masculino , Animales , Femenino , Animales Modificados Genéticamente , Antivirales , Citocinas/genética
9.
ACS Appl Mater Interfaces ; 15(24): 29406-29412, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37286381

RESUMEN

The green organic semiconductor, tris-(8-hydroxyquinoline)aluminum (Alq3), was hybridized with DNA growing in the shape of hexagonal prismatic crystals. In this study, we applied hydrodynamic flow to the fabrication of Alq3 crystals doped with DNA molecules. The hydrodynamic flow in the Taylor-Couette reactor induced nanoscale pores in the Alq3 crystals, especially at the side part of the particles. The particles exhibited distinctly different photoluminescence emissions divided into three parts compared to common Alq3-DNA hybrid crystals. We named this particle a "three-photonic-unit". After treatment with complementary target DNA, the three-photonic-unit Alq3 particles doped with DNAs were found to emit depressed luminescence from side parts of the particles. This novel phenomenon would expand the technological value of these hybrid crystals with divided photoluminescence emissions toward a wider range of bio-photonic applications.

10.
Mar Drugs ; 21(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37233475

RESUMEN

This study aimed to elucidate the structural congeners of natural izenamides A, B, and C (1-3) responsible for cathepsin D (CTSD) inhibition. Structurally modified izenamides were synthesized and biologically evaluated, and their biologically important core structures were identified. We confirmed that the natural statine (Sta) unit (3S,4S)-γ-amino-ß-hydroxy acid is a requisite core structure of izenamides for inhibition of CTSD, which is closely related to the pathophysiological roles in numerous human diseases. Interestingly, the statine-incorporated izenamide C variant (7) and 18-epi-izenamide B variant (8) exhibited more potent CTSD-inhibitory activities than natural izenamides.


Asunto(s)
Catepsina D , Inhibidores de Proteasas , Humanos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
11.
Genes Genomics ; 45(7): 901-909, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37231294

RESUMEN

BACKGROUND: In this study, we observed that in human colon carcinoma HCT116 cells mRNA level of the human ß-galactoside α2,6-sialyltransferase (hST6Gal I) was decreased by curcumin. FACS analysis using the α2,6-sialyl-specific lectin (SNA) also showed a noticeable decrease in binding to SNA by curcumin. OBJECTIVE: To investigate the mechanism for curcumin-triggered downregulation of hST6Gal I transcription. METHODS: The mRNA levels of nine kinds of hST genes were assessed by RT-PCR after curcumin was treated in HCT116 cells. The level of hST6Gal I product on cell surface was examined by flow cytometry analysis. Luciferase reporter plasmids with 5'-deleted constructs and mutants of the hST6Gal I promoter were transiently transfected into HCT116 cells, and the luciferase activity was measured after treatment with curcumin. RESULTS: Curcumin led to significant transcriptional repression of the hST6Gal I promoter. Promoter analysis using deletion mutants proved that the - 303 to - 189 region of the hST6Gal I promoter is required for transcriptional repression in response to curcumin. Among putative binding sites for transcription factors IK2, GATA1, TCF12, TAL1/E2A, SPT, and SL1 in this region, by site-directed mutagenesis analysis the TAL/E2A binding site (nucleotides - 266/- 246) was proved to be crucial for curcumin-triggered downregulation of hST6Gal I transcription in HCT116 cells. The transcription activity of hST6Gal I gene in HCT116 cells was markedly suppressed by compound C, an AMP-activated protein kinase (AMPK) inhibitor. CONCLUSION: These indicate that gene expression of hST6Gal I in HCT116 cells is controlled through AMPK/TAL/E2A signal pathway.


Asunto(s)
Carcinoma , Neoplasias del Colon , Curcumina , Humanos , Curcumina/farmacología , Proteínas Quinasas Activadas por AMP , beta-D-Galactósido alfa 2-6-Sialiltransferasa , Células HCT116 , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , ARN Mensajero/genética , Luciferasas
12.
Zygote ; 31(4): 380-385, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37212055

RESUMEN

In this study, we built on our previous research that discovered that autophagy activated the metaphase I stage during porcine oocytes in vitro maturation. We investigated the relationship between autophagy and oocyte maturation. First, we confirmed whether autophagy was activated differently by different media (TCM199 and NCSU-23) during maturation. Then, we investigated whether oocyte maturation affected autophagic activation. In addition, we examined whether the inhibition of autophagy affected the nuclear maturation rate of porcine oocytes. As for the main experiment, we measured LC3-II levels using western blotting after inhibition of nuclear maturation via cAMP treatment in an in vitro culture to clarify whether nuclear maturation affected autophagy. After autophagy inhibition, we also counted matured oocytes by treating them with wortmannin or a E64d and pepstatin A mixture. Both groups, which had different treatment times of cAMP, showed the same levels of LC3-II, while the maturation rates were about four times higher after cAMP 22 h treatment than that of the 42 h treatment group. This indicated that neither cAMP nor nuclear status affected autophagy. Autophagy inhibition during in vitro oocyte maturation with wortmannin treatment reduced oocyte maturation rates by about half, while autophagy inhibition by the E64d and pepstatin A mixture treatment did not significantly affect the oocyte maturation. Therefore, wortmannin itself, or the autophagy induction step, but not the degradation step, is involved in the oocyte maturation of porcine oocytes. Overall, we propose that oocyte maturation does not stand upstream of autophagy activation, but autophagy may exist upstream of oocyte maturation.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Animales , Porcinos , Wortmanina/farmacología , Wortmanina/metabolismo , Oocitos/fisiología , Metafase , Autofagia
13.
Front Chem ; 11: 1140562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007059

RESUMEN

Quinazolines are a class of nitrogen-containing heterocyclic compounds with broad-spectrum of pharmacological activities. Transition-metal-catalyzed reactions have emerged as reliable and indispensable tools for the synthesis of pharmaceuticals. These reactions provide new entries into pharmaceutical ingredients of continuously increasing complexity, and catalysis with these metals has streamlined the synthesis of several marketed drugs. The last few decades have witnessed a tremendous outburst of transition-metal-catalyzed reactions for the construction of quinazoline scaffolds. In this review, the progress achieved in the synthesis of quinazolines under transition metal-catalyzed conditions are summarized and reports from 2010 to date are covered. This is presented along with the mechanistic insights of each representative methodology. The advantages, limitations, and future perspectives of synthesis of quinazolines through such reactions are also discussed.

14.
J Phys Chem Lett ; 14(3): 750-762, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36651880

RESUMEN

The charge transfer (CT) process has attracted much attention due to its contribution to the improvement of spectroscopic phenomena such as Raman scattering and fluorescence. A current challenge is understanding what factors can influence CT. Here, it is demonstrated that the enhancement factor (EF) of CT (∼2000) can reach the level of electromagnetic enhancement (∼1680) when resonant CT is carried out by (Fermi level energy) band alignment between a metal nanoparticle (NP) and conjugated polymer (polypyrrole (PPy)) nanowire (NW). This band alignment results in an on- or off-resonant CT. As a proof of concept for CT based surface enhanced Raman scattering (SERS) template, the Ag NPs-decorated PPy NW is utilized to effectively enhance the Raman signal of rhodamine 6G (EF of 5.7 × 105). Hence, by means of our demonstration, it is proposed that controlling the band alignment should be considered an important parameter for obtaining a large EF of spectroscopic phenomena.

15.
Nat Commun ; 14(1): 288, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653384

RESUMEN

Dietary restriction (DR) delays aging and the onset of age-associated diseases. However, it is yet to be determined whether and how restriction of specific nutrients promote longevity. Previous genome-wide screens isolated several Escherichia coli mutants that extended lifespan of Caenorhabditis elegans. Here, using 1H-NMR metabolite analyses and inter-species genetics, we demonstrate that E. coli mutants depleted of intracellular glucose extend C. elegans lifespans, serving as bona fide glucose-restricted (GR) diets. Unlike general DR, GR diets don't reduce the fecundity of animals, while still improving stress resistance and ameliorating neuro-degenerative pathologies of Aß42. Interestingly, AAK-2a, a new AMPK isoform, is necessary and sufficient for GR-induced longevity. AAK-2a functions exclusively in neurons to modulate GR-mediated longevity via neuropeptide signaling. Last, we find that GR/AAK-2a prolongs longevity through PAQR-2/NHR-49/Δ9 desaturases by promoting membrane fluidity in peripheral tissues. Together, our studies identify the molecular mechanisms underlying prolonged longevity by glucose specific restriction in the context of whole animals.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Longevidad/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Fluidez de la Membrana , Escherichia coli/metabolismo , Restricción Calórica , Proteínas de la Membrana/metabolismo
16.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36355519

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease that results from eczema, itching, disrupted barrier function and aberrant cutaneous immune responses. The aim of the present study was to assess the efficacy of kushenol F as an effective treatment for AD via the suppression of thymic stromal lymphopoietin (TSLP) production. The results of the present study demonstrated that the clinical symptoms of AD were less severe and there was reduced ear thickening and scratching behavior in kushenol F-treated Dermatophagoides farinae extract (DFE)/1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD mice. Histopathological analysis demonstrated that kushenol F decreased the DFE/DNCB-induced infiltration of eosinophil and mast cells and TSLP protein expression levels. Furthermore, kushenol F-treated mice exhibited significantly lower concentrations of serum histamine, IgE and IgG2a compared with the DFE/DNCB-induced control mice. Kushenol F also significantly decreased phosphorylated NF-κB and IKK levels and the mRNA expression levels of IL-1ß and IL-6 in cytokine combination-induced human keratinocytes. The results of the present study suggested that kushenol F may be a potential therapeutic candidate for the treatment of AD via reducing TSLP levels.

17.
Molecules ; 27(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36235197

RESUMEN

This paper reports a concise and scalable method for the synthesis of the phytoestrogen 7,2'-dihydroxy-4',5'-dimethoxyisoflavanone 1 via an optimized synthetic route. Compound 1 was readily obtained in 11 steps and 11% overall yield on a gram scale from commercially available 3,4-dimethoxyphenol. The key features of the synthesis include the construction of the deoxybenzoin unit through a sequence of Claisen rearrangement, oxidative cleavage, and aryllithium addition and the efficient synthesis of the isoflavanone architecture from highly functionalized 2-hydroxyketone.


Asunto(s)
Fitoestrógenos , Fitoestrógenos/farmacología , Estereoisomerismo
18.
Nat Commun ; 13(1): 6193, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261659

RESUMEN

We reveal the fundamental understanding of molecular doping of DNAs into organic semiconducting tris (8-hydroxyquinoline) aluminum (Alq3) crystals by varying types and numbers of purines and pyrimidines constituting DNA. Electrostatic, hydrogen bonding, and π-π stacking interactions between Alq3 and DNAs are the major factors affecting the molecular doping. Longer DNAs induce a higher degree of doping due to electrostatic interactions between phosphate backbone and Alq3. Among four bases, single thymine bases induce the multisite interactions of π-π stacking and hydrogen bonding with single Alq3, occurring within a probability of 4.37%. In contrast, single adenine bases form multisite interactions, within lower probability (1.93%), with two-neighboring Alq3. These multisite interactions facilitate the molecular doping into Alq3 particles compared to cytosines or guanines only forming π-π stacking. Thus, photoluminescence and optical waveguide phenomena of crystals were successfully tailored. This discovery should deepen our fundamental understanding of incorporating DNAs into organic semiconducting crystals.


Asunto(s)
Ácidos Nucleicos , Timina , Aluminio , Purinas , Adenina/química , Pirimidinas , ADN , Oxiquinolina , Fosfatos
19.
Nanoscale Horiz ; 7(12): 1488-1500, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36111604

RESUMEN

Cells secrete extracellular vesicles (EVs) carrying cell-of-origin markers to communicate with surrounding cells. EVs regulate physiological processes ranging from intercellular signaling to waste management. However, when senescent cells (SnCs) secrete EVs, the EVs, which are newly regarded as senescence-associated secretory phenotype (SASP) factors, can evoke inflammation, senescence induction, and metabolic disorders in neighboring cells. Unlike other soluble SASP factors, the biophysical properties of EVs, including small EVs (sEVs), derived from SnCs have not yet been investigated. In this study, sEVs were extracted from a human IMR90 lung fibroblast in vitro senescence model. Their biomechanical properties were mapped using atomic force microscopy-based quantitative nanomechanical techniques, surface potential microscopy, and Raman spectroscopy. The surfaces of sEVs derived from SnCs are slightly stiffer but their cores are softer than those of sEVs secreted from non-senescent cells (non-SnCs). This inversely proportional relationship between deformation and stiffness, attributed to a decrease in the concentration of genetic and protein materials inside the vesicles and the adsorption of positively charged SASP factors onto the vesicle surfaces, respectively, was found to be a peculiar characteristic of SnC-derived sEVs. Our results demonstrate that the biomechanical properties of SnC-derived sEVs differ from those of non-SnC-derived sEVs and provide insight into the mechanisms underlying their formation and composition.


Asunto(s)
Vesículas Extracelulares , Espectrometría Raman , Humanos , Microscopía de Fuerza Atómica , Fibroblastos/metabolismo , Biofisica
20.
Nutrients ; 14(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014851

RESUMEN

With aging, men inevitably encounter irreversible changes, including progressive loss of testosterone and physical strength, and increased fat mass. To assess the alleviatory effects of EUAJ on andropause symptoms, including in vivo testosterone deficiency, we administered EUAJ for 6 weeks in 22-week-old Sprague-Dawley rats. Before EUAJ (3:1) (E. ulmoides:A. japonica = 3:1, KGC08EA) administration, testosterone decline in 22-week-old SD rats was confirmed compared to 7-week-old SD rats (NC group). After administration of EUAJ (3:1) at 20, 40, and 80 mg/kg for 6 weeks, testosterone, free testosterone, and mRNA expression levels (Cyp11a1 and Hsd3b1) were significantly increased at 40 mg/kg EUAJ (3:1), whereas mRNA expression levels of Cyp19a1 and Srd5a2 were significantly reduced at this concentration, compared to the control group. Swimming retention time was significantly increased at both 40 mg/kg and 80 mg/kg. In summary, EUAJ (3:1) enhanced testosterone production by increasing bioavailable testosterone, sex hormone-binding globulin (SHBG), and enzymes related to testosterone synthesis at 40 mg/kg. In addition, 80 mg/kg EUAJ (3:1) also increased physical and testicular functions.


Asunto(s)
Achyranthes , Eucommiaceae , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Envejecimiento/metabolismo , Animales , Humanos , Masculino , Proteínas de la Membrana , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Testosterona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA